
  

1. INTRODUCTION system using on-board estimation algorithm. Thus the user can 
simply use the estimated attitude information as the 
measurement for the real-time or the ground attitude 
determination algorithms. On the other hand, UVF output 
provides the unit vectors of the identified stars and thus the 
user may select stars used for the attitude determination 
algorithm. The main advantage of using UVF measurements 
over QUEST measurements is that the attitude determination 
performance can be more easily expectable due to the only 
identified stars are used for the estimation and, in result, the 
performance improvement can be achieved more 
systematically. 
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Recent development in remote sensing technology has 

brought out the need of much more accurate attitude 
information during the imaging period for the provision of 
value-added image products. In general, the real-time 
on-board estimation of a spacecraft attitude does not satisfy 
the accuracy requirement because a linearized attitude 
dynamics must be adopted due to the limited computational 
capability of the on-board processor and the lack of ancillary 
information. The restitution of accurate attitude information is, 
therefore, generally carried out at ground stations and it is 
called the precise attitude determination (PAD) algorithm.  
 This paper proposes a novel approach of implementing of 

UVF measurements to attitude estimation algorithms. A PAD 
algorithm with the UVF measurement is developed for general 
sensor mounting configuration. The estimation performance is 
evaluated by using simulated sensor outputs [1] for an imaging 
situation of an LEO (low Earth orbit) imaging satellite and 
compared with the results of using QUEST measurement. The 
results show that the PAD performance using UVF 
measurements is superior to the QUEST measurements 
because the performance can be improved by selecting 
brighter stars having better noise characteristics. 

The precise attitude determination with the accuracy of tens 
of arc-seconds (resulting in several tens of meters geo-location 
accuracy) is still challenging due to several factors; e.g. the 
high-frequency variation and perturbation of the attitude 
dynamics as well as the noise and stability characteristics of 
attitude sensors currently available. Therefore, the 
improvement of attitude determination accuracy is essential in 
order to achieve a comparable amount of ultimate geo-location 
uncertainty to the orbit determination. 
 

The development of a PAD algorithm and software includes 
many technological aspects such as the precise modeling of 
attitude dynamics and sensor characteristics, the 
implementation of an attitude estimator such as a batch least 
square estimator, an extended Kalman filter or an unscented 
Kalman filter, and the analytic and/or experimental 
determination of noise parameters. Among them, the sensor 
output characteristics have direct impact on the estimation 
performance regardless of the estimation method or the 
dynamic model of the spacecraft.  

 
2. DEFINITION OF COORDINATES 

 
The definitions of coordinate systems are identical with [1]. 

The satellite is assumed to have a main imaging payload of a 
push-broom type. The optical bench frame (OBF) of the 
satellite is thought to be the mechanical body frame. The 
satellite’s attitude information is, therefore, defined as the 
OBF attitude with respect to an inertial celestial reference 
frame (CRF) such as J2000 coordinate. Let’s denote the roll, 
pitch and yaw rotational angles as φ,  θ, and ψ, respectively. 
Then the 3-2-1 Euler rotational matrix from CRF to OBF is 
expressed as: 

 
Two types of sensor data are generally used for the attitude 

estimation: gyro output providing the inertial rate information 
of the spacecraft and the star sensor output providing the 
accurate attitude of the spacecraft with respect to an inertial 
coordinate system. Gyro output characteristic mainly has 
effect on the stability performance, which is related with the 
image quality. On the other hand, the star sensor outputs are 
mainly concerned with the geo-location accuracy number, 
which is generally treated as a performance index of a PAD 
algorithm. 
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Another expression of the rotational matrix of (1) using the 
attitude quaternion is expressed as [2].  
 Most of the conventional star sensors provide two types of 

measurement information: QUEST and UVF. QUEST output 
is the estimated quaternion  attitude  information  of  the 
spacecraft with respect to the on-board star catalog coordinate  
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Two star trackers are mounted on the satellite with different 

bore-sight directions to compensate the poor angular accuracy 
around the bore-sight axes. The two star tracker coordinates 
are denoted as SCF1 and SCF2, respectively, and the 
rotational matrix from OBF (as the body frame) to SCF1 and 
SCF2 are specified as: 
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The rotation between OBF and SCF can also be expressed as 
quaternion as: 
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The satellite has an inertial reference unit (IRU) measuring 

the satellite’s body rate. The IRU has four sets of gyros, 
providing a full 3-axis inertial rate measurement with a 
redundancy. The relation between the IRU assembly 
coordinate system, or GCF (gyro coordinate system), and the 
four gyro measurement directions is specified as: 
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The mounting direction of the IRU with respect to OBF is 
specified as: 
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3. EQUATIONS OF MOTION  

 
The linearized 6-state equation of motion for attitude 

determination is expressed as [3] 
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where ]ˆ[ ×ω  is the matrix expressing the vector cross 
product and defined as: 
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qv is the vector part of  the quaternion error  
and q

*q̂qq ⊗≡δ
*is the conjugate quaternion of q having the following 

characteristics 

Tqqqq ]1,0,0,0[** =⊗=⊗  (9)

The conjugate quaternion expresses the inverse rotation of the 
original quaternion. 

r
are the rate white noise and rate 

random walk noise, respectively. They are mutually 
independent white Gaussian random processes having the 
following statistical characteristics: 
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The gyro bias error vector is defined as: 

gg b̂bb −≡δ  (11)

q̂  is the estimated quaternion and ω̂  is the body rate vector 
having the following relation with the drift bias vector 

ggm b̂ˆ +≡ ωω  (12)

where gmω is the body rate vector measured by IRU. 

  
   The 6-state equation of motion shall now be extended to 
include absolute GCF misalignment and scale factor error [4] 
by the following assumptions: 

1. The GCF misalignment vector is defined as the 
difference between ground measured mounting 
direction, ,and the actual in-orbit mounting 

direction, , as 
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2. The four gyros mounted in IRU have only diagonal 
scale factor errors and the scale factor error matrix is 
thus defined as the following diagonal matrix: 
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3. The IRU contains rate integration gyros and thus the 

gyro output is the accumulated rate information. 
 
Then the gyro output vector is expressed as 
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where  and are angle white noise and angle 

random walk noise, respectively and their standard deviations 
are 

ABCD
av

a

ABCD
rv

σ and rσ . 

 
   The extended equation of motion shall be derived from the 
body rate expression. Thus the angle output equation of (15) 
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where shall be approximated as the following rate output equation by 
applying the finite difference method: 
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The new noise characteristics are related with the angle output 
noise characteristics as: 
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GCFη  and 

λη  are white Gaussian noise processes having 

their covariance matrices as , respectively.  
4
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   Now by assuming that the misalignment and scale factor 
error values are very small, (16) is expressed as  
 4. STAR SENSOR MEASUREMENT MODELS 
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b   The star sensor misalignments do not affect satellite’s 
attitude and are only related with measurements. Thus there is 
no dynamic coupling between star tracker misalignments with 
(22) when they are augmented into the equation of motion.  

where, . The last two terms of the above 

equation is expressed as 
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  The star sensor misalignment vector is calculated from the 
error quaternion between ground measured nominal mounting 
direction and the in-orbit mounting direction as: 
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and thus the following relation is obtained. Two star sensors are assumed to be mounted on the spacecraft 

and thus two misalignment vectors are assumed to have the 
following statistical characteristics: 
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The estimated body rate is obtained from (18) as  Now by defining the following error vectors 
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the augmented equation of motion is now expressed as 
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vector is related with the Euler angle error as 
where 
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 and from the following definitions 
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  The star sensor measurement equation is defined as the 
attitude of CCD array of the star sensor with respect to the 
inertial coordinate system(CRF) as: 

the extended equation of motion is obtained as 
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Now we derive the measurement equation expression for the 
UVF measurement and QUEST measurement. Now by ignoring the second order terms with respect to the 

state variables, the vector term of the QUEST measurement 
residual is obtained as: 

 
4 .1 QUEST Measurement 
  The QUEST measurement is the quaternion determined by 
the on-board algorithm of the star sensor. The measurement 
residual is defined as 
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is the a priori quaternion estimate obtained by 

integrating quaternion kinematics with the initial condition of 
. Also q is the estimate of and is 

expressed as 

QUEST
kq

1|ˆ −kkq

|1ˆ −− kkq 1 1|0
ˆ

−kk
SCF
SCF

SCF
SCFq

0

 
The above expression is identical with the result of [4]. 
 
4 .2 UVF Measurement 

 The UVF measurement utilizes the identified star 
information. The advantage of the UVF measurement is that 
the noise characteristics of all three axes of the unit vectors 
toward the identified stars are uniform regardless of the 
apparent angle between the star sensor’s boresight direction. 
Thus the UVF measurement residual is defined as 1|
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Now (28) can be expressed as  
 where, is the true unit vector is SCF and is related with the 
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and is the measurement noise. UVF
kn

  Now, by expressing the rotational matrix as the exponential 
matrix, (34) becomes  

where   
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and the operator is defined as the inverse operator of the 
quaternion multiplication as [4] 
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where  is the spacecraft’s attitude matrix using the 

estimated attitude quaternion( ) and the second order terms 
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Then the QUEST measurement residual is expressed as 
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Thus (33) is expressed as 
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The measurement sensitivity matrix is obtained as 
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5. A SIMULATION RESULT 

 
The performance when using the UVF measurement for the 

precision attitude determination is compared with the case of 
using the QUEST measurement. Sensor output and dynamics 
simulation are based on the implementation method expressed 
in [1]. The applied estimation method is the extended Kalman 
filter (EKF). 

Figure 2 6-State Geo-location Error (EKF+UVF)  
5 .1 6-State Estimation using EKF 

As expected, the localization error using the UVF 
measurements is superior to the case of using the QUEST 
measurements. The mean star magnitude of the UVF 
measurements is about 2.5 which gives smaller NEA (noise 
equivalent angle) than the QEUST measurements. 

  The 6-state estimation performance using EKF based on the 
dynamic model of (7) is shown in Table 1, Table 2, Figure 1 
and Figure 2. Three UVF vectors are used for the estimation 
using the UVF measurements. The stars are ordered by its 
magnitude and only the three brightest stars are used.  

5 .2 Full State Estimation using EKF  
  The estimation performance using EKF based on the full 
state dynamics of (26) is shown in Figure 3, Table 3 and Table 
4.  

 
Geo-location Error (CE90 = 226.13 m) 

 RMSE (m) STD (m) Min (m) Max (m)
X 198.46 20.53 -273.87 -127.11 
Y 25.24 23.01 -94.05 40.70 

Pointing Accuracy (arcsec) 
 RMSE STD Min Max 

Yaw 9.63 3.46 -3.22 19.69 
Pitch 14.97 13.50 13.17 25.89 
Roll 57.17 6.13 39.28 80.04 

 
Geo-location Error (CE90 = 70.79 m) 

 RMSE (m) STD (m) Min (m) Max (m)
X 47.50 20.10 -165.69 14.58 
Y 20.68 12.00 -63.22 23.82 

Pointing Accuracy (arcsec) 
 RMSE STD Min Max 

Yaw 11.66 4.29 -27.07 2.93 
Pitch 3.88 3.60 -13.59 11.66 
Roll 14.86 5.60 -1.75 48.90 

Table 1 6-State Estimation Performance (EKF+QUEST) 

 

Table 3 Full State Estimation Performance (EKF+QUEST) 

 

Figure 1 6-State Geo-location Error (EKF+QUEST) 

 
Figure 3 Full State Geo-location Error (EKF+QUEST) Geo-location Error (CE90 = 137.61 m) 

 RMSE (m) STD (m) Min (m) Max (m)
X 99.08 42.36 -151.14 15.93 
Y 29.95 16.70 -69.09 15.77 

Pointing Accuracy (arcsec) 
 RMSE STD Min Max 

Yaw 18.84 10.74 -30.21 10.98 
Pitch 5.21 5.21 -13.22 11.17 
Roll 30.23 10.37 6.08 44.27 

 
Geo-location Error (CE90 = 62.30 m) 

 RMSE (m) STD (m) Min (m) Max (m)
X 43.79 9.93 -129.46 -14.47 
Y 27.82 11.49 -12.60 54.78 

Pointing Accuracy (arcsec) 
 RMSE STD Min Max 

Yaw 6.97 2.16 -12.78 12.89 
Pitch 11.52 2.46 3.31 18.55 
Roll 10.13 2.34 2.88 36.49 

Table 2 6-State Estimation Performance (EKF+UVF) 

Table 4 Full State Estimation Performance (EKF+UVF) 

When the number of stars used for the UVF measurements are 
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increased from three to four, the localization error is greatly 
enhanced to 35.30 m as shown in Table 5. 
 
Geo-location Error (CE90 = 35.30 m) 

 RMSE (m) STD (m) Min (m) Max (m)
X 18.44 13.95 -129.02 25.39 
Y 13.80 9.51 -37.40 31.08 

Pointing Accuracy (arcsec) 
 RMSE STD Min Max 

Yaw 2.84 2.78 -6.57 11.94 
Pitch 3.47 2.99 -12.23 15.64 
Roll 5.87 3.55 -4.57 36.11 

Table 5 Performance Enhancement using Four Stars 
(EKF+UVF) 

5. CONCLUSIONS 
 
  A novel derivation of using the UVF measurement which 
can be applied to the ground processed precision attitude 
determination algorithms is proposed. The usefulness of using 
the UVF measurements over the QUEST measurements is 
demonstrated in a simulation result. The estimation 
performance when using the UVF measurements can be 
enhanced by increasing the number of the stars used for the 
estimation. However, the performance enhancement is 
expected to be saturated as the number of stars increase. Also 
it is expected that even the performance may be degraded 
because less brighter stars having worse noise characteristics 
are used for the estimation. Thus it is necessary to analyze the 
estimation performance with increasing number of stars used 
for the estimation together with the computational load, which 
is remained as a future research topic. 
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