
1. INTRODUCTION 
Object tracking is one of the most intriguing problems in the 

computer vision area. It is not only related to the problem of 
the shape and the color tracking of an object but also linked to 
that of object recognition or identification of a particular 
object. Recently, in the computer vision area, visual tracking 
of moving objects is an active research issue since the particle 
filter approaches [1][2][3] were proved to be efficient in object 
tracking especially in the cluttered environment. Particle 
filters are based upon the Bayesian conditional probabilities 
such as prior distributions and posterior ones. It is strongly 
believed that intelligence in robot vision would be enhanced 
through particle filters or the CONDENSATION(CONditional 
DENSity PropagATION) algorithm [3] [4] since the tracking 
information will eventually increase the machine intelligent 
quotient (MIQ) in terms of target object context, visual 
planning and control. In addition to clutter, visual 
uncertainties such as nonlinear dynamics, non-Gaussian 
density, occlusion and lightness change make particle filters a 
necessary component in robot vision. 
 In this paper, we address a robust object tracking algorithm 
based on multiple observation models in particle filters. First 
of all, we choose a static webcam as the vision sensor, and 
assume that a human is moving in clutter. The research goal is 
to track a moving face or hand with the vision sensor. Now, 
we apply our particle filter, namely, CONDENSATION 
algorithm [5] to keep track of the moving face or hand. The 
particle filters are a class of stochastic approximations of the 
state posterior with a set of N weighted particles or samples 

( ) ( )
1,...,{ , }i i

i Nt tX X =  where ( )i
tX is a possible state of the 

thi particle at time t and ( )i
tπ  is the associated weight. 

Therefore, we perform the Monte-Carlo simulation of 
underlying probability distributions which may take arbitrary 
form, instead of deriving the analytic solution. The state 

( )i
tX  may be any measurable contexts such as position, 

velocity, rotating angle, scaling factor, tilting, etc. of a moving 
object. Moreover, the measure tZ may be any measurable 

quantities such as image contrast, digital image subtraction, 
edge-detected silhouette, 2D or 3D contours, RGB or HSV 
colors, etc. Each particle (contour as a particle) represents a 
possible state with the associated weight of a likelihood, 
which is measurable or computable.  
In particle filters, we keep track of the state samples with the 

non-zero posterior probability approximated by the ensemble 
of the weights on all of these sampled particle sets and the 
idea is based upon factored sampling [6] in Bayesian inference 
rule described by the conditional posterior density as 
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 where tX  is the state at time t , 1{ ,..., }t
tZ Z Z=  is the 

observation up to time t , κ  is a proportional constant, 
1( | )t tP X X −   is the Markov-chain motion model, ( | )t tP Z X  

is the measurement model, and ( )
1

i
tπ −  is the weight for particle 

( )
1

i
tX −  . Here, ( ) ( )
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1
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t t t t
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q X P X Xπ − −
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= ∑  is the proposal 

distribution from which N samples ( )i
tX  are drawn by 

Monte-Carlo approximation of the integral. In brief, the 
posterior density 1

1( | )t
tP X Z −
−  is recursively approximated 

by the particle set ( ) ( )
1 1{  ,  }i i

t tX π− −  , and then these samples are 

weighted by the likelihood ( ) (i)
1 t-1 t-1 = P(Z |X )i

tπ − .  
Primarily, the particle filter algorithm consists of three 

elementary steps: sampling, predicting, and measuring. The 
basic principle is the conditional probability propagation 
between the prior density in sampling and predicting, and the 
posterior density in measurement. Thus, the prior and the 
posterior conditional densities are calculated by taking turns in 
a recursive form. Existing algorithms of particle filters include 
CONDENSATION[4][7], Kalman particle filter (KPF) [8], 
and Unscented Kalman particle filter (UPF) [9]. Both KPF and 
UPF add the predicting models by using the state estimate 
with the Gaussian and non-Gaussian assumptions respectively 
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and thus improve the tracking characteristics of the prior in 
terms of better proposal distributions. Three updating steps of 
tracking in particle filters are summarized as follows: 

1) Sampling (Selection) 
2) Predicting (Particle Dynamics) 
3) Measuring (Output) 

In the sampling phase, the importance sampling [7] 
incorporates hints or other sources by introducing samples at 
more likely spots in the state space while partitioned sampling 
[10] suggests that particles may be sampled hierarchically for 
efficiency in order to obtain equivalent results with fewer 
samples. Therefore, in the subsequent section, we investigate 
two observation models in particle filters: the point clouds of 
skin colors and the active contours of the B-spline snakes. 
 
2. Particle Filters with Multiple Observation Models 

for Visual Object Tracking 
The CONDENSATION algorithm provides a plausible way 

of tracking a moving object with some features for the vision 
sensors in terms of a probabilistic propagation process. If the 
number of the object features is K, the state of the thi particle 

or contour becomes ( ) k  Ri
tX ∈  , and if the particle dynamics 

is considered, the number of the state is increased twice as 
much. The basic tracking algorithm is represented as follows: 
 

CONDENSATION Tracking Algorithm 
•  Given the old particle or contour set ( ) (i)

1 t-1{ ,  }i
tX π−  , 

compute a new particle or contour set ( ) (i)
t{  , }i

tX π  for 

i=1,… , N Initialize ( )
0  = 1/Niπ , and its cumulative distribution 

( )
0  = i/Nic . 

1) Select a sample ( )i
tS  as follows: 

a) Generate a uniformly distributed random 
number r  [0,1]∈ . 

b)  Find the smallest j for which ( )
1   rj

tc − ≥  . 

c)  Set ( ) (j)
t-1 = Xi

tS . 
 
2) Predict from sampling to obtain ( )i

tS  . 

               (i)
1 t( |  S )t tP X X − =                  (2) 

Here, we imbed the particle dynamics by choosing one of 
many different equations of motion and the estimation 

procedure in order to find
( )

| 1

i

t tS
∧

− . Note that deterministic drift 
and stochastic diffusion are included together by the random 
number generation. 
 
3) Measure the object features and update the weights in terms 
of the multiple observation models 

                             
(i)

( )
t t t|t-1 = P(Z |X = )Si

tπ
∧

                 (3) 

And normalize the posterior so that ( )

1
 = 1

N i
t

i
π

=
∑ and compute 

the cumulative distribution ( )i
tc . Update ( ) (i)

t{  , }i
tX π . For the 

multiple observation models, the conjunctive or disjunctive 
operators may be used in order to combine the multiple object 
features together by using AND or OR in ( | )t tP Z X  

multiplication in ( )i
tπ . 

 

•  Estimate the moments of the tracked positions or other 
estimates after all N particles or contours are updated as 
follows: 

               
( )N ( )
| 1

i=1
[ ( )] = ( )

i
i

t t t tE g X g Sπ
∧

−∑ i             (4) 

For the state estimate [ ( )]tE g X , it is noted that there is no 
explicit state estimate maintained, that is, the state information 
is just a cloud of particle points or samples of active contours. 
Therefore, we may arbitrarily choose either the mean value of 
the particles or the confidence region of an inverse covariance 
matrix. Moreover, one element of the state, for example, the 
average position of the target object is estimated for updating 
the next position of the target object centroid. 
 
2.1 Sampling (Selection) 
 In the sampling stage, we select N particle samples by 
picking them randomly and uniformly in [0,1] from the 

normalized weights given by ( )

1
 = 1

N i
t

i
π

=
∑ . This selection 

approach is the same as the roulette-wheel selection as in the 
genetic algorithm (GA), which is equivalent to spinning a 
roulette wheel with the arc-lengths of bins equal to the particle 
weights. Then, the particles are resampled according to the 
score, that is, highly likely particles are duplicated while 
unlikely ones are eliminated. This results in adaptive focusing 
on more promising areas of the state space. 
 
2.2 Prediction (Particle dynamics) 
 The prediction step is to place each particle or contour from 
the generative form of dynamics given by 

 ( ) (i)
t-1 t-1= f(S ) + i

tS ε                   (5) 
Where f() is a deterministic component and tε  is a random 
component. Usually, f() represents a nonlinear drift of each 
particle with different displacement and tε  is an independent 
diffusion of each particle typically modeled with a white noise. 
Therefore, we often use the extended Kalman filters (EKF) as 

the prediction model in order to estimate 
( )

| 1

i

t tS
∧

−   by assuming 
that noise characteristics complies with Gaussian. The particle 
or contour dynamics is related to the observation model in 
such a way that it might lead to the features of higher 
likelihood observation as shown in Figure 1. 
 

 
Figure  1. Observation Mechanisms in the Predicting and the 
Measuring Stages: (a) 5 Particle Samples of Point Cloud and 
(b) 5 Particle Samples of Deformable Contours 
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2.3 Measurement (Output) 

 For each particle or contour ( )i
tX , we compute new weight 

( )i
tπ  using the measurement likelihood 

( ) (i)
t t = P(Z |X )i

tπ                 (6) 
and find the plausibility conditions such that the particles with 
impossible configurations are given zero likelihood. For 
example, the positions outside of the image features of interest 
are given ( )  = 0i

tπ . 
 
2.4 Multiple Observation Models 
 In this paper, we choose two object features for face or hand 
tracking. One is the contrast information from the digitally 
subtracted images and the other is the skin-color information 
from the HSV color model. The former measure of the 
subtracted images tP∆  is defined by 

t t-( , ) = |I (x,y) - I (x,y) |tP x y ∆∆           (7) 

where ( , )tI x y is the ( , )thx y  pixel value of the image at time 
t in [0,1] and tI −∆  is the delayed image at time frame t − ∆ . 
Also, the latter measure of the skin color is based on the HSV 
model where the hue and the saturation information are used 
by computing the Gaussian density function 

2 2
R

2
-(h(x,y)-h (x,y)) ( ( , ) ( , ))( , ) = exp( )

2
R

t
hs

s x y s x yC x y
σ
− −   (8) 

Where hsσ  is the equivalent standard deviation for the HS 
features; 

( , )tC x y is the ( , )thx y  feature of the skin color; ( , )h x y and 
( , )s x y are the hue and the saturation values of a 

color-measured control point at (x,y), and ( , )Rh x y  and 
( , )Rs x y  are the hue and the saturation references for the 

initial particle subset, respectively. Now we consider the 
observation models for the convectional particle sets of point 
cloud and for the deformable contours [5] of the B-spline 
snakes. 
•  Point Cloud as Particles: 
- For the thi particle's point ( , )p p ix y P∈ ∆  of both the 
subtracted pixel and the associated skin-color point, the weight 
of the prior is computed by using the disjunctive operator 
(OR): 

P P i

( )
P P t P P

(x ,y ) P
 = { (x ,y ) + C (x ,y )}i

t tw P λ
∈∆

∆∑       (9) 

- The state vector for one particle is defined as 
( ) [ ( ), ( ), ( 1), ( 1)]i T
t P P P PX x t y t x t y t= − −  at time t and the 

dynamics is represented by 
t-1 AX

tt vX B= +                                (10) 

where A, B are the appropriate matrices, and tv  is the white 
noise with diffusion covariance matrix about the two axes. 
•  Deformable Contours as Particles: 
- For the control points of the thi  contour, ( , )P P ix y P∈  of 

the subtracted image, and for the corresponding thi  
skin-color control points ( , )C C ix y C∈  , the weight of the 
prior is computed by using the conjunctive operator (AND): 

i i

( )

( ,y ) P ( ,y )
 = ( , ) ( ,y )

P P C C

i
t t P P t C C

x x C
w P x y C xλ

∈∆ ∈
∆∑ ∑   (11) 

- The state vector for one particle is defined as 

( ) T
P P P P = [x (t), (t), (t), (t),x (t-1), (t-1), (t-1), (t-1)]i

tX y yθ α θ α is 
the centroid of the control points in ; ,  iP θ α∆ are the rotating 
angle and the scaling factor of the B-spline snake, 
respectively; and the dynamics is similarly described by (10). 
Note that λ is the balancing coefficient between two 

independent object features as the conjunctive or disjunctive 
operators are used for them. Also, the posterior tπ is obtained 
by resampling and normalization such as 

N= f [ ( ( ))]t R N tf f wπ               (12) 
where, ,N Rf f  are the normalization and the resampling 
functions, respectively, and tw  is given in (9) and (11). The 

deformable contour of the thi  particle has the form of the 
planar affine shape space as 

t

x y

y

T
P P

'  WY
1   0  Q  0    0   Q

 =  
0  1   0   Q  Q  0

= [x , ,cos 1 ,cos 1 ,sin ,sin ]

x

t

Q Q

W

Y y θ α θ α θ θ

= +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− + − +

  (13) 

where W  is the shape matrix, tY  is the shape-space vector 

computed from tX  , and T T T
x y',  = [Q ,Q ]Q Q are the updated 

and the reference control point vector, respectively. Here, the 
updated control point vector 'Q  is represented by 

T
P,1 P,n P,1 P,n'  = [x (t),...,x (t);y (t),...,y (t)]Q       (14) 

where n is the total number of the control points in a B-spline 
snake. 
 

3. Experimental Results of Visual Object 
Tracking with Particle Filters 

Now three cases of the multiple observation models are 
applied to visual object (face or hand) tracking based on the 
particle filters in the experiment. 
 
3.1 Robust Face Tracking Based On Particle Filters 
of Point Cloud 
For the simulation of face tracking with a particle cloud, we 

choose the number of particles, 50 N = and the particle 
observation model, (9) in order to combine both the contrast 
and the skin-color features together. Here,  = 1/Nλ  , and the 

threshold of ( )iπ   for the effective particle size is 2/ N  for 
adaptive resampling. The standard deviations for diffusion in 
both axes are =  = 30x yσ σ  and those for the hue and the 

saturation are selected as  = 0.05hsσ . Figure 2 shows visual 
face tracking with particle filters of point cloud using both 
subtracted images and skin colors. 

Figure 2. Experiment of Visual Face Tracking with Particle 
Filters of Point Cloud using Both Subtracted Images and Skin 
Colors (N=50) 
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Figure 3. Experiment of Visual Hand Tracking with 
Deformable Contours using Subtracted Images Only 
 

 
Figure 4. Experiment of Visual Face Tracking with 
Deformable Contours using Both Subtracted Images and Skin 
Colors (N=100) 
 

 

Figure 5. Experiment of Visual Face Tracking with 
Deformable Contours using Both Subtracted Images and Skin 
Colors (N=50) 
 

3.2 Robust Hand Tracking Based On Deformable 
Active Contours 
For the simulation of hand tracking with contours, we choose 

the number of particles, 200 N =200 and the deformable 
observation model, (9). But, in this case, we take only the 
contrast features into account by setting 0λ =  , the number 
of control points in the B-spline snake is n=45 , and the 
threshold of ( )iπ  for the effective particle size is 1.5/ N 
during adaptive resampling. The standard deviations for 
diffusion in both axes are 5x yσ σ= =  and those for the 
rotating angle and the scaling factor are selected as 

3(deg.), 0.05θ ασ σ= =  , respectively. In Figure 3, it is 
demonstrated that visual hand tracking is performed with the 
B-spline snake of deformable contours using subtracted 
images only. 
 

3.3 Robust Face Tracking Based On Deformable 
Active Contours and Skin-Colors 

Finally, for the simulation of human face tracking with both 
point clouds and contours, we choose the number of particles, 
N=50 or N=100 and the observation model, (11) in order to 
combine both the contrast and the skin-color features together. 
Here, the number of control points is n=21 and the threshold 

of ( )iπ  for the effective particle size is 1.5/ N for adaptive 
resampling. The standard deviations for diffusion in both axes 
are 5x yσ σ= =  , those for the rotating angle and the scaling 

factor are selected as 1(deg.), 0.01θ ασ σ= =  , respectively, 
and those for the hue and the saturation are selected as 

0.05hsσ = . However, by using the multiple observation 
models ( 1/ )Nλ =  such as deformable contours and a 
constrained point cloud of both subtracted images and skin 
colors under the same conditions, we could significantly 
reduce the number of particle sets in the above cases by half 
with better tracking results as shown in Figures 4 and 5, 
respectively. 
 
4. Competitive-AVQ for Reinitialization Procedure 

 Particle filter of point cloud can be realized in real-time. 
However, particle filter has inherent problem which is 
initialization point. When a new object is detected   
somewhere part of interface, particle filter Set in pause 
position has to move and tracking the new object 
instantaneously. In order to do that, we use competitive-AVQ 
algorithm of neural network. This algorithm defines an area 
which made stripe of image plane boundary. And it is used 
when IFD data exceeds a threshold value of stripe area. The 
c-AVQ algorithm is represented as follows: 

       

c-AVQ for PF Reinitialization 
- Check boundary stripes PB with threshold (3%~4% IFD 
data), if the condition holds, 

- For all pt(k) in PB > threshold at time t, find the winner 
(the ith cluster) 

{ }*

2
( ) arg min ( ) ( )         #(cluster)i j j tw k w k p k j= ⋅ − →  

( )* * *
B( 1) ( ) ( ) ( )        #(P )i i t iw k w k p k w k kµ+ = + − →  

- Update the ith particle state s.t. the average is shifted to 
the ith cluster center (the winner) 

*i
t iE x w⎡ ⎤ =⎣ ⎦
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5. Priority-based Subtraction of Background  
IFD & Effective Particle Size 

 Multiple object tracking regards interframe difference (IFD) 
as potential field (V). After regarding that, it determines the 
priority for many particles and repeats a sampling (selection), 
particle dynamic, output one by one how to subtract with 
priority at IFD buffer. This subtraction method is like 
subtractive clustering algorithm. If this method is used, object 
tracking can be done at different direction though two objects 
cross each other.  

0

K k-1

V  = P

V  = P-V  ,  k = 1~# (PF Set)

∆

∆
           (15) 

 When several measurement values or a uniform posterior 
distribution is appeared, effective particle size, effN , is used in 
resampling stage and is defined as follows: 

N 2
i

i=1
 = 1/( )effN π∑                 (16) 

 Therefore, if effN  is very small or large, resampling is 
attempted. In this case will be happen when the object is 
paused and when the tracking is failed. Figure 6 shows 
experiment result using real-time multiple object tracking 
based on point cloud method.  
      

6. Conclusions and Discussion 
In this paper, the CONDENSATION algorithm is extended 

to combining the multiple observation models such as particle 
clouds, contour tracking, digital subtraction and skin color, 
with application to human face or hand tracking, where 
multiple object features are measured with the prior and 
posterior probability densities are propagated in order to 
obtain the state estimates such as the target average position, 
the angles of principal axis, the scaling factors, etc. From the 
experimental results, the suggested particle filters with 
multiple observation models demonstrated robust visual 
tracking in uncertainties such as clutter and nonlinear motion.  
The advantages of particle filters with multiple observation 

models are demonstrated here with application to face or hand 
tracking in robot vision. First, the particle filters can have 
target object dynamics embedded easily by combining 
nonlinear dynamics and multiple observation models with a 
smaller particle size. Second, Clutter in the measurement 
likelihood that causes the multi-modal posterior can be dealt 
with robustly. Third, point clouds, control points, and 
statistical parameters in particle or contour tracking may be 
simply converted to the image segmentation. And finally, it is 
possible to apply particle filters to high-level inference of 
context semantics by using the 2D or 3D contour information 
as shown in Figure 7 where the tracking result of picture 
drawing is demonstrated. For the future works, we will 
investigate the multiple object particle filters as well as the 
real-time implementation of particle filters for contour 
tracking. 

 
Figure 6. Real-time particle filter for multiple objects 
 
 

 
Figure 7. Picture Drawing Results with Particle Filters of 
Multiple Observation Models (N=200) 
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