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Abstract: Recently, particle filters have attracted attentions for nonlinear state estimation. In this approaches, a posterior probability distri-

bution of the state variable is evaluated based on observations in simulation using so-called importance sampling. We proposed a new filter,

Evolution Strategies based particle (ESP) filter to circumvent degeneracy phenomena in the importance weights, which deteriorates the filter

performance, and apply it to simultaneous state and parameter estimation of nonlinear state space models. Results of numerical simulation

studies illustrate the applicability of this approach.
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1. Introduction
State estimation of dynamic systems using a sequence of their noisy

observations is ubiquitous in control system science. This prob-

lem can be solved by a Bayesian approach, that is, inference on the

unknown state can be performed according to the posterior prob-

ability distribution (pdf), which is obtained by combining a prior

pdf for the unknown state with a likelihood function relating them

to the observations. When observations come sequentially in time,

recursive state estimation, which evaluates the evolving posterior

pdf recursively in time, is often interested. However, the posterior

pdf only admits an analytical expression for very restricted cases,

including linear Gaussian state space models where well-known

Kalman filter [1],[17] can be applied. In many realistic problems,

state space models include nonlinear and non-Gaussian elements

that preclude a closed form of expression for the optimal state es-

timate and that many approximations have been proposed such as

the extended Kalman filter (EKF) and Gaussian sum filter [12],[9].

By the recent progress of computing ability, “particle filtering,” a

simulation-based method for Bayesian sequential analysis attracts

much attentions. In this approach, the integral in Bayes’ rule is

approximated by a weighted sum based on the discrete grid sequen-

tially chosen by the importance sampling and the estimates are ob-

tained based on corresponding importance weights [5], [2]. A com-

mon problem in the particle filter is the degeneracy phenomenon,

where almost all importance weights tend to zero after some itera-

tion. Hence, a large computational effort is wasted to updating the

particles with negligible weights. In order to resolve this difficulty,

several modifications have been proposed such as resampling parti-

cle filter (SIR) [10] introducing a selection a resampling steps and

Evolution Strategies based Particle Filter (ESP) [19] introducing the

concept of Evolution Strategies [16], an Evolutionary Computation

approach. In this paper, the ESP filter is applied to simultaneous

state and parameter estimation of nonlinear state space models. Nu-

merical simulation studies have been conducted to exemplify the
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applicability of this approach.

2. Particle Filters
Consider the following nonlinear state space model.

xk+1 = f(xk, vk) (1)

yk = g(xk, wk) (2)

wherexk andyk are the state variable and observation, respectively,

f andg are known possibly nonlinear functions,vk andwk are in-

dependently identically distributed (i.i.d.) system noise and obser-

vation noise sequences, respectively. We assumevk and wk are

mutually independent. Problem to be considered here is to find the

best estimate of the state variablexk in some sense based on the

all available data of observationsy1:k = {y1, y2, . . . , yk}. We can

solve the problem by calculating the posterior pdf of the state vari-

ablexk of time instantk based on all the available data of observa-

tion sequencey1:k.

The posterior pdfp(xk|y1:k) of xk based on the observation se-

quencey1:k satisfies the following recursion:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(Chapman-Kolmogorov equation) (3)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(Bayes’ rule) (4)

with a prior pdfp(x0|y0) ≡ p(x0) of the initial state variablex0.

Here normalizing constant

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk

depends on the likelihoodp(yk|xk), which is determined by the ob-

servation equation (2).

Since a closed form solution is not admitted except in very restric-

tive cases such as linear Gaussian state space models, where the

well-known Kalman filter [1], [17] can be applied, some approx-

imations should be introduced. The most popular approximation



approach is the extended Kalman filter (EKF) [12],[9]:

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = ÃkPk−1|k−1Ã
T
k−1|k−1 + Q

x̂k|k = x̂k|k−1 + Kk(yk − g(x̂k|k−1)) (5)

Pk|k = (I −KkC̃k)Pk|k−1

Kk = Pk|k−1C̃
T
k (C̃kPk|k−1C̃

T
k + R)−1

Ãk =
df(x)

dx

∣∣∣
x=x̂k−1|k−1

C̃k =
dg(x)

dx

∣∣∣
x=x̂k|k−1

.

This is applicable to nonlinear models with additive Gaussian noise

and uses a linearization technique based on a first order Taylor ex-

pansions of the nonlinear system and observation equations about

the current estimate. However, it approximates the posterior pdf

to be Gaussian. If the true density is non-Gaussian, then a Gaus-

sian can never describe it well. In such cases, approximate grid-

based filters and particle filters will yield an improvement in per-

formance. They approximate the true posterior pdf with the fol-

lowing weighted empirical distribution of a set ofn � 1 samples

{x(i)
k , (i = 1, . . . , n)} called as particles or discrete grids with

associated importance weights{w(i)
k , (i = 1, . . . , n)}, w(i)

k >

0,
∑n

i=1
w

(i)
k = 1,

p(xk|y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (6)

whereδ(·) is a function such thatδ(x) = 1 for x = 0 andδ(x) = 0

otherwise.

Here, the particles are generated and associated weights are chosen

using the principle of “importance sampling” [6]:

Supposep(x) ∝ π(x) is a pdf from which it is difficult to draw

samples, but for whichπ(x) can be evaluated (and sop(x)). Let

x(i) (i = 1, . . . , n) be samples that are easily generated from a pdf

q(x), called an importance density. Then a weighted approximation

to the densityp(x) is given by

p(x) ≈
n∑

i=1

w(i)δ(x− x(i)) (7)

with the normalized weight of thei-th particle

w(i) ∝ π(x(i))

q(x(i))
(8)

So, if the samplesx(i)
k in (6) were drawn from an importance den-

sityq(x
(i)
k |y1:k), then the associated normalized weights are defined

as by (8) to be

w
(i)
k ∝

p(x
(i)
k |y1:k)

q(x
(i)
k |y1:k)

. (9)

If the importance densityq(xk|y1:k−1) is chosen to factorize such

that

q(xk|y1:k) = q(xk|xk−1, y1:k)q(xk−1|y1:k−1). (10)

Then we can obtain samplesx(i)
k by augmenting each of the

existing samplesx(i)
k−1 sampled from the importance density

q(xk−1|y1:k−1) with the new state sampled fromq(xk|xk−1, y1:k).

Noting that the posteriori pdf can be rewritten using Bayes’ rule as

p(xk|y1:k) =
p(yk|xk, y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk, y1:k−1)p(xk|xk−1, y1:k−1)

p(yk|y1:k−1)
p(xk−1|y1:k−1)

∝ p(yk|xk)p(xk|xk−1)p(xk−1|y1:k−1) (11)

we have

w
(i)
k ∝

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)p(x
(i)
k−1|y1:k−1)

q(x
(i)
k |x(i)

k−1, y1:k)q(x
(i)
k−1|y1:k−1)

= w
(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, y1:k)
. (12)

The particle filter with these steps is called “Sequential Importance

Sampling Particle Filter” (SIS).

It is known that the SIS filter suffers from the degeneracy phe-

nomenon, where all but one of the normalized importance weights

are very close to zero after a few iterations. By this degeneracy, a

large computational effort is wasted to updating trajectories whose

contribution to the final estimate is almost zero. In order to pre-

vent this phenomenon, several modifications have been introduced.

Among them, resampling process is used often. Its idea is to elim-

inate trajectories whose normalized importance weights are small

and to concentrate upon the trajectories with larger weights. It in-

volves generating new grid pointsx∗
k
(i) (i = 1, . . . , n) by resam-

pling from the grid approximation (6) randomly with probability

Pr(x∗
k
(i)

= x
(j)
k ) = w

(j)
k (13)

and the weights are reset tow∗
k
(i) = 1/n. The choice of resampling

is done by using some criterion such as the effective sample size

Neff introduced in [14],

Neff =
n

1 + Covq(·|y1:k)(wk(x
(i)
k ))

, (14)

whose estimate is given by

N̂eff =
1∑n

i=1
(w

(i)
k )2

(15)

with the associated normalized weightw
(i)
k . This indicates how

many samples in the particle cloud that actually contribute to the

support of the pdf approximation. We can resample if the effective

number of samples is less than a predefined thresholdNthres <

1. Particle filter with this resampling process is called “Sampling

Importance Resampling Particle Filter” (SIR) [5], [2].

3. Evolutionary Computation and Evolution Strategies
Based Particle Filter

A novel particle filter called Evolution Strategies Based Particle

(ESP) filter was proposed to prevent the degeneration in SIS fil-

ter [19], by recognizing the similarity and the difference between

the importance sampling and resampling processes in SIR filter

and evolution processes in Evolution Strategies (ES) originated by

Rechenberg and Schwefel [16]. In this section, they are briefly re-

viewed.



3.1. Evolutionary Computation

Evolutionary computation approach is a computational model of

natural evolutionary processes as key elements in the design and

implementation of computer-based problem solving systems. A va-

riety of evolutionary computation approaches such as ‘Evolutionary

Programming’ (EP) [8], ‘Evolution Strategies’ (ES) [16], ‘Genetic

Algorithm’ (GA) [11], and ‘Genetic Programming’ (GP) [15] have

been proposed and studied. Extensive survey and comments are

given in [4],[3],[7]. The common conceptual base is simulating the

evolution of individuals (candidate solutions) via processes of se-

lection and perturbation. These processes depend on the perceived

performance (fitness) of the individuals as defined by the environ-

ments.

Evolutionary computation approach maintains a population of

structures that evolve according to rules of selection and other op-

erators, such as recombination and mutation. Each individual is

evaluated, receiving a measure of its fitness in the environment.Se-

lection (reproduction) focuses attention on high-fitness individuals,

thus exploiting the available fitness information.Recombination

(also refer to ascrossover) and mutation perturb those individu-

als, providing general heuristics for exploration. Here we explain

Evolution Strategies (ES) briefly. ES is developed by Rechenberg

and Schwefel [16] to solve hydrodynamic problems. It is applied

to continuous function optimization in real-valuedn-dimensional

space. Mutation is applied more often to the solution rather than

crossover. The simplest method can be implemented as follows: Let

x(k) = (x
(k)
1 , · · ·x(k)

n ) ∈ Rn, (k = 1, · · · , µ) be each individual

in the population.
3.1.1 Generation of initial population

We generate an initial population of parent vectors{x(k), (k =

1, · · · , µ)} randomly from a feasible range in each dimension.
3.1.2 Evolution operations

1. Crossover

This process allows for mixing of parental information while pass-

ing it to their descendants. A typical crossover rule is

x′
j = xS,j + χ · (xT,j − xS,j) (16)

whereS andT denote two parent individuals selected at random

from the population andχ ∈ [0, 1] is a uniform random or deter-

ministic variable. The indexj in x′
j indicatesj-th component of

new individuals. This is a similar operator used in differential evo-

lution [18].

2. Mutation

This process introduces innovation into the population. It is real-

ized by following additive process,

σ′
j = σj exp(τ ′N(0, 1) + τNj(0, 1)

x′′
j = x′

j + σ′
jNj(0, 1) (17)

Here,N(0, 1) denotes a realization of normal random variable with

mean and unit variance,Nj(0, 1) denotes random variable sampled

anew for counterj of normal random variable with mean and unit

variance andσj denote the mean step size. The factorsτ andτ ′ are

chosen depending the population sizeµ [4]. In this approach, small

variations are much more frequent than larger variations, expressing

the state of affairs on the phenotypic level in nature.

3. Selection

This is the completely deterministic process choosing the individ-

uals of higher fitness out of the union of parents and offspring or

offspring only to form the next generation in order to evolve to-

wards better search region.

• (µ + λ)-selection

This createsλ offspring fromµ parents and selected theµ best

individuals out of the union of parents and offspring.

• (µ, λ)-selection

This createsλ offspring fromµ parents and selected theµ best

individuals out of offspring(λ ≥ µ).

3.2. Evolution Strategies Based Particle Filter

It can be seen that SIR and ES have similarities; both the impor-

tance sampling process in SIR filter and mutation process in ES

give perturbation to the parent individualsx
(i)
k−1 with extrapolation

by f(x
(i)
k−1), and both resampling process in SIR filter and selec-

tion process in ES selects offspring among the perturbed individu-

als. However, there is a difference between them, i.e., resampling

in SIR is carried out randomly and the weights are reset as1/n,

while the selection in ES is deterministic and the fitness function is

never reset. Hence, by replacing the resampling process in SIR by

the selection process in ES, we have derived a new particle filter as

follows.

Based on the particlesx(i)
k−1 (i = 1, . . . , n) sampled

from the importance densityq(xk−1|y1:k−1), we generate`

x
(i,j)
k , (j = 1, . . . , `) sampled from the importance density func-

tion q(xk|x(i)
k−1, y1:k). Corresponding weightsw(i,j)

k are evaluated

by

w
(i,j)
k = w

(i)
k−1

p(yk|x(i,j)
k )p(x

(i,j)
k−1 |x

(i)
k−1)

q(x
(i,j)
k |x(i)

k−1, y1:k)

i = 1, . . . , n, j = 1, . . . , ` (18)

From the set ofn` particles and weights{x(i,j)
k , w

(i,j)
k , (i =

1, . . . , n, j = 1, . . . , `)}, we choosen sets with the larger

weights, and set asx(i)
k , w

(i)
k (i = 1, . . . , n). This process cor-

responds to(n, n`)-selection in ES. Hence, we call this parti-

cle filter using (n, n`)-selection in ES as Evolution Strategies

based particle filter Comma (ESP(,)). When we add the par-

ticles x
(i,0)
k = f(x

(i)
k−1), (i = 1, . . . , n) in addition to n`

x
(i,j)
k , (i = 1, . . . , n, j = 1, . . . , `) sampled from the impor-

tance density functionq(xk|x(i)
k−1, y1:k) as above and evaluate the

weightsw
(i,j)
k , (i = 1, . . . , n, j = 0, . . . , `) by (18), and then

choosen sets of(x(i)
k , w

(i,j)
k ) with larger weights from the or-

dered set ofn(` + 1) particles{x(i,j)
k , w

(i,j)
k , (i = 1, . . . , n, j =

0, . . . , `)}, we can obtain another ESP filter. Since this ESP filter

uses the selection corresponding to(n + n`)-selection in ES, we

can call this filter as Evolution Strategies based particle filter Plus

(ESP(+)). The algorithms are summarized in Fig.1.



Procedure ESP� �
For k = 0

i = 1, . . . , n, sample x
(i)
0 ∼ q(x0|y0);

i = 1, . . . , n, evaluate the weight

w
(i)
0 = p(y0|x(i)

0 )p(x
(i)
0 )/q(x

(i)
0 |y0).

For k ≥ 1

i = 1, . . . , n

set x
(i,0)
k = f(x

(i)
k−1)

j = 1, . . . , `

sample x̃
(i,j)
k ∼ q(xk|x(i)

k−1, y1:k);

i = 1, . . . , n and j = 0, 1, . . . , `,

evaluate the weight

w
(i,j)
k = w

(i)
k−1

(p(yk|x̃(i,j)
k )p(x̃

(i,j)
k |x(i)

k−1)

q(x̃
(i)
k |x̃(i)

k , y1:k))
.

Sort the set of pairs {x̃(i,j)
k , w

(i,j)
k (i = 1,

. . . , n, j = 0, 1, . . . , `)}

by the size of w
(i,j)
k in descending

order.

Take the first n x
(i)
k from the ordered

set {x̃(i)
k , w̃

(i)
k }.

i = 1, . . . , n, normalize the weight

w
(i)
k = w

(i)
k /

∑n

i=1
w

(i)
k .

Let p(xk|y1:k) ≈
∑n

i=1
w̃

(i)
k δ(xk − x

(i)
k )� �

Fig. 1. Algorithm for ESP filters. ESP(+): with the underlined part;

ESP(,): without the underlined part

4. Simultaneous State and Parameter Estimation by
Evolution Strategies Based Particle Filter

The ESP filter is applied here to simultaneous state and parameter

estimation of nonlinear systems. Consider the nonlinear state space

model (1) with unknown parameterθ and (2), where a posteriori pdf

p(xk, θ|y1:k) should be approximated to estimate state and param-

eter simultaneously, Application of Bayes’ rule (4) provides

p(xk+1, θ|y1:k+1) ∝ p(yk+1|xk+1, θ)p(xk+1|θ, y1:k+1)

×p(θ|y1:k+1)

Since the form of the theoretical pdfp(θ|y1:k) is not known for

unknown parameter case, we replaceθ by θk at timek, and simply

includeθk in an augmented state vectorxk = (xk, θk)T , whereθk

evolves as

θk+1 = θk + ηk (19)

andηk is a normal random disturbance with zero-mean and very

small variance. Then approximation of the true posteriori pdf is

given by

p(xk|y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x(i)

k ) (20)

If particlesx(i)
k in (20) were drawn from an importance density

q(x
(i)
k |x(i)

k−1, y1:k) = qx(x
(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k)

×qθ(θ
(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k) (21)

with importance densities forxk and θk, qx(x
(i)
k |x(i)

k−1, θ
(i)
k−1,

y1:k) andqθ(θ
(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k), and the associated normalized

weights are evaluated by

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
k , θ

(i)
k )

qx(x
(i)
k , θ

(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k)

×
p(x

(i)
k , θ

(i)
k |x(i)

k−1, θ
(i)
k−1)

qθ(θ
(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k)

. (22)

Then, the SIS, SIR and ESP filters are defined as above.

4.1. Numerical Examples

Numerical simulation are carried out to exemplify the applicability

of the proposed ESP filter. First, we consider the following nonlin-

ear state space model

xk =
xk−1

2
+

θxk−1

1 + x2
k−1

+ 8 cos (1.2k) + vk

= f(xk−1, θ) + vk (23)

yk =
x2

k

20
+ wk (24)

wherevk and wk are i.i.d. zero-mean normal random variables

with variance 10 and 1, respectively, and value of the parameterθ

is known to be 25. The normal distribution with meanf(x
(i)
k−1) and

variance 10 is chosen as the importance densityq(xk|x(i)
k−1, y1:k).

A sample behavior of the true state and corresponding observation

processes is shown in Fig.2. Sample paths of the estimates by the

(a) True state

(b) Observation

Fig. 2. Sample behavior of state and observation processes

particle filters (SIS (n = 200), SIR (n = 100, Neff = 50), and the

proposed ESP(,) (n = 100, ` = 2)) and ESP(+) (n = 100, ` = 1))

are given in Fig.3, and that of EKF as well for comparison. Particle
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(a) Estimate by SIS

(b) Estimate by SIR

(c) Estimate by ESP(,)

(d) Estimate by ESP(+)

(e) Estimate by EKF

Fig. 3. Sample paths of state estimates (solid line: estimate,

dashed line: true state)

filters, especially SIR and proposed ESP filters, show well behav-

iors in nonlinear state estimation, while the estimate by EKF cannot

follow the true state.

Figure 4 shows the 2-dimensional plots of squared errors atk =

1000 and processing time [s] untilk = 1000. ESP filters show

Fig. 4. Squared estimation errors and processing time (triangle:

SIS, box: SIR, star: ESP(,), diamond: ESP(+))

similar performance as SIR both in squared estimation errors and

processing time, and their fluctuations are smaller than SIR. It im-

plies that ESP filters are more stable than SIR.

Next, we consider the unknown parameter case where the true

value of θ = 25 in (23) is not known. Here, only the re-

sults by ESP(,) with the importance densitiesqx(x
(i)
k |x(i)

k−1, θ
(i)
k−1,

y1:k) ∼ N (f(x
(i)
k−1, θ

(i)
k−1, 10) and qθ(θ

(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k) ∼

N (θ
(i)
k−1, 0.01) are shown in Fig.5 since the EKF does not work as

before. Though the estimate approach to the true ones, the con-

vergence speed is slow and the filter leaves much for improvement.

For examples, better choice of design parametersn, Neff and `

and choice of evolution operations should be pursued since the es-

timation performance, of course, depends on the choice of them.

5. Conclusions
The novel particle filter, which was developed by recognizing the

similarity and the difference between the importance sampling and

resampling processes in the SIR filter and mutation and selection

processes in ES and substituting(µ, λ)-selection in ES into resam-

pling process in SIR, is applied to simultaneous state and parameter

estimation of nonlinear state space models. It works stably and pro-

vides small mean square errors compared to EKF filter. Application

of other evolution operations such as crossover and modification of

mutation will have the potential to create much higher performance

particle filters.
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