
1. INTRODUCTION

SVG(Scalable Vector Graphics) a language for describing

two-dimensional graphics in XML. SVG allows three types of

graphic objects: vector graphic shapes (e.g., paths consisting

of straight lines and curves), images and text. Graphical

objects can be grouped, styled, transformed and composited

into previously rendered objects. Text can be in any XML

namespace suitable to the application, which enhances search

ability and accessibility of the SVG graphics. The feature set

includes nested transformations, clipping paths, alpha masks,

filter effects, template objects and extensibility. SVG drawings

can be dynamic and interactive.

SVG is a host language in terms of SMIL(Synchronize

Multimedia Integration Language) Animation and especially

introduces additional constraints and features as permitted by

that specification. Except for any SVG-specific rules explicitly

mentioned in this specification the normative definition for

SVG's animation elements and attributes is the SMIL

animation specification. the normative definition for SVG's

animation elements and attributes is the animation

specification.

SVG supports the following four animation

elements(animate, set, animateMotion, animateColor) which

are defined in the SMIL Animation specification.

Every day more organizations are being embraced CBD

(component-based development) for its promise of code

reusability and, as a result, reduced development effort and

faster time-to-market.

CBD promises a more efficient way to develop applications

with commercial, vendor-provided or internally developed

objects. Using a visual development environment to test and

assemble these objects significantly enhances productivity for

all the members of the development team.

In this paper, we propose CBD method to figure component

specification for SVG animation. It includes business type

modeling, interface responsibility modeling, interface type

modeling and component architecture modeling.

2. RELATED WORKS

DOM(Document Object Model) assigns various XML

objects to variables. The variables can thus be accessed and

manipulated by any number of applications. It is XML's tree

structure that enables you to quickly retrieve the information

or XML component you need. But it doesn't represents

information about attribute and aggregation relationship.

Besides that, there are XOMT diagram and UML class

diagram in the area of DTD modelling method. XOMT, on

the basis of OMT object-oriented access, has too many parts

that cannot be expressed by OMT itself, so extends OMT

needs an extension. This requires that you learn another

notation, and you will be not mapping class or the

generalization concept used in the object model to semantic

DTD. The modeling method using UML class diagram

propose mapping rules from XML Document with links UML

class diagram. It describes general mapping rules for XML

DTD and Document Instance. It is not mapped to elements

and documents for a special purpose. In case of

RDF(Resource Description Framework), it doesn't map every

element to class. According to kinds of RDF resource, it maps

to relationships. In case of SMIL, it doesn't map synchronized

tag to class. It represents synchronization through message

between classes.

But the effect of SVG animations is variable according to

time. We can not represent them using static class diagram.

It cab be used class diagram in step of conceptual modeling

and component diagram for dynamic modeling of animation.

3. SVG Animation and UML

3.1 SVG Animation

3.1.1 Animation element

SVG is a host language in terms of SMIL Animation and

therefore introduces additional constraints and features as

permitted by that specification. SVG supports the following

four animation elements which are defined in the SMIL

Animation specification.

(1) animate

It allows scalar attributes and properties to be assigned

different values over time.

(2) set

A convenient shortabd for 'anamate', which is useful for

assigning anamation values to non-numeric attributes and

properties, such as the 'visibility' property.

(3) animateMotion

It moves an element along a motion path.

(4) animateColor

It modifies the color value of particukar attributes or

properties over time.

(5) animateTransform

It modifies one of SVG's transformation attributes over time,

such as the 'transform' attribute.

3.1.2 Extended attribute

Additionally, SVG includes the following compatible

extensions to SMIL Animation.

Component Modeling for SVG animation

Yan Ha, Hea-Sook, Park, and Soon-Mi Lee

School of Computer & Information, KyungIn Women’s College, Incheon, Korea

(Tel : +82-32-5400-122; E-mail: {white, edpsphs, leesm}@kic.ac.kr)

Abstract: It has not been studied about modeling methods for SVG documents to represent animation in the web that has been

recently increased in interest. In this paper, I propose component modeling for SVG documents by CBD methodology. First, I

propose conceptual modeling by UML class diagrams for converting SVG document into component diagram. And then, I propose

rules to convert the UML class diagram into component diagram.

Thus, main contribution of this paper is that it can generate a component diagram for a SVG document using Component-Based

Development methodology.

Keywords: component diagram, class diagram, SVG animation, UML, CBD

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

(1) path attribute

SVG allows any feature from SVG's path data syntax to be

specified in a path attribute to the animationMotion element.

Table 1 path attrinute

Name Command Parameters Description

moveto M or m (x y)+
Start a new sub-path at the

given(x,y) coordinate.

closepath Z or z none

Close the current subpath by

drawing a straight line from

the current point to current

subpath's initial point.

L or l (x y)+

Draw a line from the current

point to the given (x,y)

coordinate which becomes

the new current point.

H or h x+

Draw a horizontal line from

the current point(cpx, cpy) to

(x,cpy).

lineto

V or v y+

Drawsa vertical line from the

current point (cpx,cpy) to

(cpx,y).

C or c
(x1 y1 x2

y2 x y)+

Draw a cubic Bezier curve

from the current point to (x,y)

using (x1,y1) as the control

point at the beginning of the

curve and (x2, y2) as the

control point at the end of the

curve.

curve

Q or q
(x1 y1 x

y)+

Draw a quadratic Bezier

curve from the current point

to (x,y) using (x1,y1) as the

control point.

(2) keypoints attribute

SVG adds a keyPoints attribute to the animateMotion to

provide precise control of velocity of motion path animations.

(3) rotate attribute

SVG adds a rotate attribute to the animateMotion to control

wether an object is automatically rotated so that its X-axis

points in the same direction(or opposite direction) as the

directional tangent vector of the motion path.

3.2 UML class diagram

3.2.1 class and stereotype

A class is an abstraction of the common properties from a

set containing many similar objects. UML classes are being

shown to use rectangles with the name of the class inside the

rectangle. A variation uses a three-segment box; the top

segment has the name of the class, the middle segment

contains a list of attributes, and the bottom segment contains a

list of operations.

 A stereotype is the class of an entity in the UML

metamodel. The UML metamodel is the model of UML itself,

expresses in UML. Stereotypes provide an important

extension mechanism to UML, allowing users to extend the

modeling language to better address their needs. The usual

notation for stereotypes is to enclose the stereotype in

guillemets proceding the name of the entity; for example

"《type》stack, " which is the name of a class providing a

stack interface for another implementation.’

3.2.2 association and composition

Associations are logically bidirectional unless explicitly

constrained. A binary association is drawn as a solid path

connecting two classifier symbols. An aggregation is a special

type of association that implies logical or physical

containment. Composition is a strong form of aggregation.

Composition means that part objects are solely the

responsibility of the composite class. Composition is showned

by graphical inclusions of the components within the

composite or with a filled in aggregation diamond.

3.3 UML component diagram

The component diagram's main purpose is to show the

structural relationships between the components of a system.

3.3.1 component and Interface

A component represents a modular, deployable, and

replaceable part of a system that encapsulates implementation

and exposes a set of interfaces. A component is drawn as a

rectangle with two smaller rectangles protruding from its left

side.

An interface is a specifier for the externally -visible

operations of a class, component, or other classifier (including

subsystems) without specification of internal structure. An

interface may also be displayed as a small circle with the name

of the interface placed below the symbol. The circle may be

attached by a solid line to classifiers that support it.

3.3.1 dependency and realization

A dependency indicates a semantic relationship between

two model elements. It is shown as a dashed arrow between

two model elements.

A realization is a kind of dependency relationship. It

connects model element like interface to each component. A

interface supply behaviral specification not structure and

implementation.

4. SYSTEM

4.1 System architecture

The following figure is a system architecture that generates

a component Diagram from SVG Document.
(1) Parser

XML parser checks syntax error and generates from SVG

Document to DOM tree format.

(2) Business Type Modeller

It extracts business objects and defines attributes. And it

represents composition relation with multiplicity.

We call ‘《core》’ business object in case of type to have

business information that is continuously tracking and has

independent identifier.

It needs to separate core business type and represents

composition relations with multiplicity.

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

SVG Document
parserparser

Business Type

Modeller

Business Type

Modeller

Interface

responsibility

modeller

Interface

responsibility

modeller

Interface Type

Modeller

Interface Type

Modeller

Component

Architecture

Modeller

Component

Architecture

Modeller

UML

Class Diagram

UML Component

Diagram

Component

Diagram

generator

 Fig1 System Architecture

(3) Interface Responsibility Modeller

It allocates one interface to core business object. And it is

marked '1..n' multiplicity at composition relation. It has

association relations using stereotype for animation tag.

(4) Interface Type Modeller

Interface type to manage core business object is inserted

automatically get(), set() operations. In case of interface type

for animation, It is inserted SVG attributes that has been

transferred into operations.

(5) Component Architecture Modeller

It generates each component for each core business object.

The component has ‘《componentSpecification》’stereotype.

And interface type has other notation and can be attached to

component.

4.1.1 Generating of Business Type Model
Parsed SVG document generates class diagram by business

type modeller. The rules are following.

[Rule 1] Element name to be start tag is class name and

attribute is private attribute.

[Rule 2] It is attached ‘《core》’ stereotype to SVG, path,

text and basic shapes element. SVG class become class.

[Rule 3] There is a composition relation between SVG class

and another class.

[Rule 4] When it occurs one more same classes, it

represents only one class with occurrence times.

The following algorithm is that it generates from SVG

Document to business type model using mapping rules

━━━━━━━━━━━━━━━━━━━━━━━━━━━

It generates UML class diagram composed of classes and

relations that is extracted from SVG document. It inserts

attribute and value to class and multiplicity to composition.

4.1.2 Generating of Interface Responsibility Model
It converts UML class diagram into interface responsibility

model by algorithm for generating business type model

[Rule 5] It generates interface manager class of

composition relation with 1..n multiplicity for '《core》’class.

Interface manager class has ‘《interface

Type》’stereotype.

 [Rule 6] Animation elements is to be class with

‘《interface Type》’stereotype and has association relations.

The following algorithm is that it converts business type

model to interface type model by using above rules.

Input: Business type model, SVG Document

Output: Interface Responsibility Model(UML class

diagram)

begin

{

 for(number of 《core》 classes

 { // from Business type model

 generate 《interface Type》class

 make composition relations

 represent multiplicity

 }

 for(animation element tags)

 { // from SVG document

 generate 《interface Type》class

 make association relations

 represent multiplicity

}

 }
━━━━━━━━━━━━━━━━━━━━━━━━━━━

The following algorithm is that it generates interface

responsibility model from business type model. It generates

interface manager classes and attaches association relations.

Input: SVG Document

Output: Business Type Model

begin

{

 Make a root class '《core》'

 // Make a SVG class

 for (Number of attribute list)

 insert attributes and values

 for (Numebr of start tags)

 {

 if (Path or Text or Basic shape)

 then {

 if (The 《core》 class)

 update multiplicity

 else

 { generate 《core》 class

 for (Number of attribute list)

 insert attributes and values

 Composition relation

 }

 else {

 make class

 Composition relation

 }

 }

 }

}

end;

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

The following table 2 is summarized items in UML class

diagram that is mapped to items in SVG Document.

4.1.3 Generating of Interface Type Model

The following rules are inserted operations

for ‘ 《interface Type》’ class in interface responsibility

model .

[Rule 7] Interface manager class generates get(), set()

public operation.

[Rule 8] It maps attributes of animation element class into

operations.

The following algorithm is to insert operations to interface

responsibility model.

━━━━━━━━━━━━━━━━━━━━━━━━━━━

Input: Interface Responsibility Model

Output: Interface Responsibility Model(insert operations)

begin

{

 for (《interface Type》class

 if (Interface manager)

 insert get(), set() operations

 else

 {

 for(number of attributes)

 map to operation

 }

 }

 end;

━━━━━━━━━━━━━━━━━━━━━━━━━━━

We complete interface responsibility model to insert

operation into class in class diagram.

4.1.4 Generating of Component Architecture model

It converts interface responsibility model that is UML class

diagram into component diagram by using following rules.

 [Rule 9] Class with ‘《core》’stereotype is to be a

component with ‘《componentSpecification》’stereotype.

[Rule 10] Class with ‘《interface Type》’stereotype is to

be interface.

[Rule 11] It is dependency relations between is

‘《componentSpecification》’component. And it is

realization relations between component and interface.

The following algorithm generates component diagram by

using above rules.

━━━━━━━━━━━━━━━━━━━━━━━━━━━

Input: Interface Responsibility Model

Output: Component Diagram

begin

{

 for (《core》class)

 generate 《componentSpecification》component

 for (《interface Type)class)

 generate an interface

 for (relations whith《core》classes)

 make dependency

 for(relations with 《core》class and 《interface

Type)class)

 make a realization relation

 }

 end;
━━━━━━━━━━━━━━━━━━━━━━━━━━━

In the Table 4, we shall describe mapping relations

between class diagram and component diagram.

A component represents a modular, deployable, and

replaceable part of a system that encapsulates implementation

and exposes a set of interfaces. A component is drawn as a

rectangle with two smaller rectangles protruding from its left

side.

4.2 Results

It generates a component diagram from a SVG documents.

4.2.1 SVG Document

It is an instance of SVG document that is input for this

system.

━━━━━━━━━━━━━━━━━━━━━━━━━━━

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000303

Stylable//EN" "http://www.w3.org/TR/2000/03/

WD-SVG-20000303/DTD/svg-20000303-stylable.dtd">

<svg width="5cm" height="3cm" viewBox="0 0 500

300">

 <desc>Example animMotion01 - demonstrate motion

animation computations</desc>

 <!--Draw the outline of the motion path in blue, along with

three small circles at the start, middle and end.-->

 <path d="M100,250 C 100,50 400,50 400,250"

Table 2 Mapping from SVG to UML Class diagram

SVG document

items kinds of element tag
UML class diagram

svg, path,

text, basic shape

element

《core》

stereotype

element

animation

class
《interface

Type》

stereotype

svg, path, text, basic

shape element
private attribute

attribute

animation public operation

animation association relation relation

with element

tags
etc. composition relation

Table 4 Mapping from UML class diagram to component

UML class diagram

item type
UML Component Diagram

《core》

stereotype

《componentSpecification》

stereotype component
class

《interfaceType》s

tereotype
interface

between

《core》classes
dependency

relations between《core

》and《interface

Type》

realization

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

 style="fill:none; stroke:blue; stroke-width:7.06" />

 <circle cx="100" cy="250" r="17.64" style="fill:blue" />

 <circle cx="250" cy="100" r="17.64" style="fill:blue" />

 <circle cx="400" cy="250" r="17.64" style="fill:blue" />

 <!-- Here is a triangle which will be moved about the

motion path. It is defined with an upright orientation with the

base of the triangle centered horizontally just above the origin.

-->

 <p ath d="M-25,12.5 L25,12.5 L 0,87.5 z"

 style="fill:yellow; stroke:red; stroke-width:7.06" >

 <!-- Define the motion path animation -->

 <animateMotion dur="6s" repeatCount="indefinite"

 path="M100,250 C 100,50 400,50 400,250" rotate="auto"

/>

 </path>

</svg>

━━━━━━━━━━━━━━━━━━━━━━━━━

4.2.2 UML Class Diagram

We generates from SVG document to UML class diagram

and component diagram.

(1) Business Type model

It generates UML class diagram that is identified core

business class defined relationships from SVG document.

Fig 2 Business Type Model

 (2) Interface Responsibility model

It inserts interface type class to business type model.

Fig 3 Interface Responsibility Model

(3) Interface Type Model

It defines interface type model for ‘《interface

Type》’class in interface responsibility model.

Fig 4 Interface Type Model

4.2.3 UML Component Diagram

It is component diagram mapped to interface responsibility.

Fig 5 Component Diagram

4.4 Comparison

The following table is comparison of modeling rules with

XML application.

XOMT proposes new notations extended OMT. [5,6,7]

Modeling interprets XML document structure using static

diagram. It accord object-oriented concept(Inheritance etc)
[8, 9] modeling uses synchronized modeling for multimedia

document. It is focused on time. This study uses component

and interface for modelling web animation.

Main contribution of most study is that it maps XML

application to an UML class diagram. But the UML class

diagram is focused on static structure for representing XML

documents. We can not describe dynamic animations of SVG

document using class diagram. This study separates static

shape elements and dynamic animation elements. And it uses

interface class for supporting animation.

It uses component based development method for

generating component diagram. There are 4 steps : the

generation of business type model, the generation of interface

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

responsibility, the generation of interface type and the

generation of component architecture.

Table 3 Comparison with modeling of XML applications

 XOMT
[5, 6, 7]

Modeling

[8, 9]

Modeling
This study

Domain
SGML

DTD

SGML/XML

DTD,

document

instance

(included

RDF, WIDL,

CDF, OSD)

SMIL

document

SVG

document

(SMIL

animation)

Approach
Object-

Oriented

Object-

Oriented

 Object-

Oriented

Component-

based

Based

modeling

language

OMT UML UML UML

Diagram class

class,

component

use case,

sequence,

collaboration,

class,

component

class,

component

Interface none none none

animation

element,

core class

Tool
XOMT

Editor

Rational

Rose,

Plastic etc

Rational

Rose, Plastic

etc

Rational

Rose,

Together etc

5. Conclusion and future works

This paper proposes an component based development for

web animation of SMIL, SVG animation. We need new

method to support both static elements and dynamic elements.

Main contribution of this paper is that it can make it easier to

map SVG component to the object-oriented database scheme

due to CBD methods. The CBD tools - Rational Rose or

Together etc. - which supports various diagram including

component diagrams and makes all kinds of database codes

and object-oriented codes.

Research keeps studying how to integrate various XML

application for web animation into component diagram and to

manage using CBD methods.

REFERENCES

[1] "Scalable Vector Graphics (SVG) 1.0 Specification"

http://www.w3.org/TR/2000/03/ WD-SVG-20000303/.

 [2] Paul Festa, "W3C, 새로운 그래픽 기술 표준 공시“,

http://cnetkorea.co.kr/news/2000/08/03/20000803f.html

[3] 권오천, 신규상, “CBD 지원 도구의 핵심 기능”,

정보처리학회지 제 7 권 4 호, pp.18-26.

[4] Inho Park, Ehno Han, Eunju Chong, Eunjung Kim,

Jongmin Bae, Hyunsok Kang, Wansyug Kim, "XOMT:

An Object Diagramming Technique fir SGML DTD

Design, " Journal(C) of KISS, Volume 3, Number 3, pp.

228-237 , 1997.

[5] Yan Ha, Yong Ju Hwang, yong Sung Kim, " Mapping

algorithm from SGML DTD to UML class diagram",

Journal of KISS(B), Volume 26, Number 4, pp. 508-520,

1999.

[6] Won Seok Chae, Yan Ha, Yong Sung Kim, "XML

document structure diagram using UML class diagram",

Journal of KIPs, Volume 6 Number 10, pp. 2670-2679,

1999.

[7] Mi Kyung Lee, Yan Ha, Yong Sung Kim, "Convert from

RDF schema to UML Class Diagram", Journal of KIPs,

Volume 7, Number 1, pp. 29-40, 2000.

[8] Won Seok Chae, Yan Ha, Yong Sung Kim,

"Synchronization of SMIL Document using UML use

case and sequence diagram", Journal of KISS(Software

applications), Volume 27, Number 4, pp.357-369, 2000.

[9] Sang-eun Kim, Yan ha, Yong-sung Kim, “ Integrated

object modelling of SMIL, RDF, and WIDL document.”,

Journal of KISS(software and application), Volume 28,

Number 1, 2001.

[10] "SMIL Animation", http://www.w3c.org/TR/smil-

animation/.

[11] James Rumbaugh, Ivar Jacobson, Grady Booch, "The

unified modeling language reference manual", Addison

Wesley Longman Inc., 1999.

[12] "OMG Unified Modeling Language Specification

Version1.3", http://www.rational.com/media/uml/

 post.pdf, 1999. 6.

[13] Cool Software Korea, "CBD Training using COOL:Joe

1.1", 2000. 10.

[14] Natanya Pitts-Moultis, Cheryl Kirk, "XML Black Book",

The Coriolis Group Inc., 1999.

[15] Elliotte Rusty Harold 저, 김용권 역, "XML Bible",

정보문화사, 1999.

