

1. INTRODUCTION

For recent broadband network environment, network

devices, especially network security appliances such as
firewall, IDS(Intrusion Detection System) or IPS(Intrusion
Prevention System), and VPN gateway, need H/W based
design. NP(Network Processors) are very common solution to
reduce the processing load from the host processor and
accelerate the performance associated with networking.

In this paper, we presented the design issues to implement
the cipher module which processes cryptographic algorithms,
3DES and HMAC-MD5, in Intelâ IXP 2400 platform. The
module can be used for IPsec or SSL.Each paper must be
divided into two parts. The first part includes the title, authors’
name, abstract and keywords. The second part is the main
body of the paper.

2. TARGET PLATFORM

IXP 2400 is one of network processors released by Intelâ

and consists of 9 programmable processors: one Intel XScale
core and 8 second-generation Microengines all on the same
die. The Intelâ XScale core is an advanced Reduced
Instruction Set Computer (RISC) machine that is compliant
with ARM Architecture V5STE, general-purpose processor.
The micro-engines are RISC processors optimized for
fast-path packet processing. And, IXP 2400 supports its own
programming languages: Microengine Assembly and
Microengine C.

Table 1 shows the major components of the IXP 2400 and
the newly released IXP 2800 and IXP 2850.

There are DRAM, SRAM controllers and Scratchpad
memories inside of IXP 2400. However, each Microengine
has its own local memory, too. Among them, local memory
has the shortest access time, and we used it as main memory
for our implementation. Figure 1 shows the functional units of
the IXP 2400.

Table 1 The major components of the IXP 2400/2800/2850.

Fig. 1 The caption should be placed after the figure.

We divided the local memory into several segments to store

data and look-up tables. For example, Sbox for DES and
T-values for MD5, a key for 3DES and a key for HMAC-MD5
are stored in proper segments.

3. Cipher API implementation in IXP 2400

3.1 Local memory Usage
The local memory inside each of Microengines has 4 bytes

width and 2560 bytes length and we divided it several
segments to store date related with each cipher algorithm. The
figure 2 shows the detailed usage of local memory in our
implementation.
3.1.1 LM_MD5_IPAD_BASE

This is the start address from which 64 bytes date obtained
by XOR with hash key and the constant value of 0x36363636
for HMAC-MD5 is stored.
3.1.2 LM_MD5_DATA_BASE

This is the start address from which data is stored and its
maximum is 1536 bytes. Notice that date includes the original
information to be hashed and padding bits MD5 algorithm
requires.
3.1.3 LM_MD5_OPAD_BASE

This is the start address from which 64 bytes date obtained

Implementing Cipher APIs in Inter IXP 2400

Sang-Su Lee*, Min-Ho Han*, and Jeong-Nyeo Kim*
* Network Security Department, ETRI, Korea

(Tel : +82-42-860-1613; E-mail: {sangsu, mhhan, jnkim}@etri.re.kr)

Abstract: In this paper, we presented our implementation of 3DES and HMAC-MD5 processing functionality in Intelâ IXP 2400
platform. It can be used as encryption and authentication engine for VPNs such as IPsec and SSL.

Keywords: Network Processor[1], DES[2], 3DES[2], MD5[3], HMAC[4], IPsec[5]

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

by XOR with hash key and the constant value of 0x5c5c5c5c
for HMAC-MD5 is stored.

Fig. 2 The local memory usage map.

3.1.4 LM_MD5_HASH_BASE

The result of single MD5 is stored from this address.
Actually, the first hash result using inner pad, key, and data is
stored in it. And the next hash result using outer pad, key, and
the first hash value overrides this segment. For IPsec, upper 12
bytes out of the final hash value are used as HMAC-MD5
result.
3.1.5 LM_MD5_KEY_BASE

From this address, 128 bits key of HMAC-MD5 algorithm
is stored.
3.1.6 LM_MD5_T_BASE

The T-values defined in MD5 algorithm are stored from this
address. For this, 256 bytes out of the local memory space are
required.
3.1.7 LM_DES_SBOX_BASE

Sbox values defined in DES algorithm are stored from this
address. For Sbox, 256 bytes of local memory are used.
3.1.8 LM_DES_ROUND_KEY_BASE

The round keys for 3DES are stored from it. This segment
is shared with segment start from LM_MD5_OPAD_BASE.
Thus, in our implement HMAC-MD5 and 3DES are not
processed at the same time.

3.2 Implemented cipher APIs

Implemented functionalities are coded as macro function
style using IXP 2400-native macro-assembler. However, any
applications implemented using the assembler can reuse this
APIs on their purposes.
3.2.1 insert_T macro function

This macro stores T-values in local memory area starting
from LM_MD5_T_BASE. Thus, it doesn’t need to be called
in every application using our implementation for MD5 or
HMAC-MD5.
3.2.2 get_HMAC_MD5 macro function

This is the main macro to obtain HMAC-MD5 result.
get_MD5 is another macro which processes pure MD5
algorithm and called by get_HMAC_MD5 macro inside.
XORed values using 128-bit hash key and inner pad, and data

to be hashed are processed by get_MD5 and its result is stored
from LM_MD5_HASH_BASE. However, XORed values with
the hash key and outer pad are stored from
LM_MD5_OPAD_BASE.

Finally, get_MD5 performs hashing using the XORed value
and previous hashing value. The first 96-bit value of the
second hashing is used for authentication in IPsec. The figure
3 shows the processing step of it.

Fig. 3 Processing steps of get_HMAC_MD5 macro.

3.2.3 get_MD5 macro function

This macro performs pure MD5 hashing algorithm and
returns 128 bits hash value. In our implementation, data to be
hashed is re-arranged to big-endian order because
Microengines treat the date in big-endian manner.
3.2.4 initiate_SBOX macro function

This macro places the Sbox values from LM_SBOX_BASE
of local memory. In general, DES has 8 Sboxs and each of
them needs at least 32 bytes. Thus, 256-byte memory area is
needed.
3.2.5 tri_key_schedule macro function

This macro derives round keys of 3DES from 192 bits
original key. In IPsec, this key value would be agreed through
IKE of two peers.

This macro uses another internal macro named
key_schedule which generates round key from 64 bits key
value for DES. In detail, Let’s define the 192 bits key as KEY
and three of 64 bits segment as key1, key2, and ket3. Then
KEY can be considered as the concatenation of the three
segments. key_schedule macro derives round key of DES from
each of the segment, so it should be called 3 times in
tri_key_schedule as showed in figure 4.

Total size of round keys is 384 bytes. Figure 4 shows round
key generation steps.

Fig. 4 Processing steps of tri_key_schedule macro.

3.2.6 tri_DES_CBC macro function

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

This macro uses another internal macro, Cipher, which
implements pure DES encryption and decryption and returns
64 bits result. Cipher used round keys derived by
tri_key_schedule macro and called three times by
tri_DES_CBC which supports 3DES in EDE. Figure 5 shows
the processing steps.

Fig. 5 Processing steps of tri_DES_CBC macro

4. TEST PERFORMANCE

With the cipher module explained in previous section,
we implemented IPsec VPN engine in IXP 2400, and its
performance obtained by test is summarized in table 2.
Notice that the unit of the value is Mbps.

Table 2 Test performance of IPsec module using our APIs.

5. CONCLUSTIONS

In this paper, we described our implementation of
3DES and HMAC-MD5 functionalities in Intel IXP
2400 platform. We used local memory of each
Microengine of IXP 2400 and implemented macro
function style APIs to process the algorithms as.

REFERENCES

[1] Bill Carlson, Intel Internet Exchange Architecture and

Applications – A Practical Guide to IXP2XXX Network
Processors, Intel Express, 2003.

[2] Shneier. B., Applied Cryptography, John Wiley, NY,
1994.

[3] R. Rivest, “The MD5 Message-Digest Algorithm,” IETF
RFC 1321, 1992.

[4] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC:
Keyed-Hashing for Message Authentication,” IETF RFC
2104, 1997.

[5] S. Kent and R. Atkinson, “Security Architecture for the
Internet Protocol,” IETF RFC 2401, 1998.

