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Discrete-Time Feedback Error Learning with PD Controller
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Abstract: In this study, the basic motor control system had been investigated. The Discrete-Time Feedback Error Learning (DTFEL)
method is used to control this system. This method is anologous to the original continuous-time version Feedback Error Learning(FEL)
control which is proposed as a control model of cerebellum in the field of computational neuroscience. The DTFEL controller consists
of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The
feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward
controller, used to solve the tracking control problem, is adaptable. To make such the tracking perfect, the adaptive law is designed
so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of
feedback error as a teaching signal for learning the inverse model. The PD control theory is selected to be applied in the feedback part
to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are
taken to clarify the study.
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1. Introduction
The production machines in the industrial have been played a
significant role. They have been improved in order to increase
both quantity and quality of the production. They are high-cost,
over functional and, due to the used of static PID controller
[3], have moderate performance. Meanwhile, there are some
locally made ones but they are low-performance even though
they have moderate cost. Nowadays, digital controllers are re-
placing the analog one. This is due to the rapid development in
Microelectronics making digital electronics components much
cheaper with very high performance adequate to apply to the
control applications. Digital control theory and many control
algorithms, which are digital based, have also been developed
and adopt to the real systems.

The objective of this study is to find the cheap controller but can
achieve the desired system performance.

For simplicity, the simple DC-servo motor, instead of the ex-
pensive CNC machine, is used as a controlling plant. Normally,
one controller scheme alone can not response so well. So more
than one controller schemes are usually proposed.

Feedback Error Learning (FEL) [2, 4, 5, 6, 8, 9, 11, 12] itself
consists of more than one control mechanisms.

The FEL novel architecture combines learning and control ef-
ficiently. The novelty of FEL method lies in its use of feed-
back error as a teaching signal for learning the inverse model,
which is essentially new in control literature. Originally, FEL
is adopted from the concept of brain motor control as stated in
[6].

In this study, the mathematical knowledge which is useful for
analyzing the DTFEL system, is briefly discussed in the first
part. Then, the stability of the DTFEL system is analyzed. After
that, the PD controller is discussed. Next, the simulation results

from the study will be demonstrated. Finally, the conclusion of
this study will be shown.

2. Mathematical Preliminaries
In this section, the mathematical requirement to analyze the DT-
FEL in the next section is discussed. The main and most impor-
tant area is to study the strictly positive real system. Also, there
are many new theorems proved in this section.

Consider the linear discrete-time varying system given by

x(k+1) = A(k)x(k)+B(k)u(k),

y(k) = C(k)x(k)+D(k)u(k),
(1)

with A(k), B(k), C(k), andD(k) are appropriately dimensioned
matrices. The pulse-transfer matrix of this system isH(z) =
C(zI−A)B+D.

The definition of positive real and strictly positive real is given
as following definitions.

Definition 1: [10] A square matrixH(z) of real rational func-
tions is a positive real (p.r.) matrix if
(d1)H(z) has elements analytic in|z|> 1.
(d2) HT(z∗)+H(z) is positive, semidefinite and Hermitian for
|z|> 1.

In case thatH(z) has some simple poles on|z| = 1, condition
(d2) can be replaced by
(d3) The poles of the elements ofH(z) on |z|= 1 are simple and
the associated residue matrixes ofH(z) at these poles are 0,
(d4) H(ejθ) + HT(e− jθ) is a positive semidefinite Hermitian
matrix for all realθ for whichH(ejθ) exists.

Definition 2: [10] A rational transfer matrixH(z) is a strictly
positive real (s.p.r.) matrix ifH(ρz) is p.r. for some 0< ρ < 1.



Given definition 2, a necessary and sufficient condition in the
frequency domain for s.p.r. transfer matrices in the classH can
be defined as following.
Definition 3: [10] An n×n rational matrixH(z) is said to be-
long to classH if H(z) + HT(z−1) has rankm almost every-
where in the complexz-plane.
Theorem1: [10] Consider them×m rational matrixH(z) ∈H

given in Eq. 2. ThenH(z) is a s.p.r. matrix if and only if
(a) All elements ofH(z) are analytic in|z|> 1,
(b) H(ejθ)+HT(e− jθ) > 0, ∀θ ∈ [0,2π].
A system with a s.p.r. transfer matrix has many advantage char-
acteristics which are very important in adaptive control. The
following lemma mathematically represents the characteristics
necessary for proving the system stability.
Lemma 1 (Discrete-time version of Kalman-Yakubovich-Popov)
[10] Assume that the rational transfer matrixH(z) has poles that
lie in |z|< γ, where 0< γ < 1 and(A,B,C,D) is a minimal real-
ization ofH(z). ThenH(γz) is s.p.r., if and only if real matrices
P = PT > 0, Q andK exist such that

ATPA−P = −QQT − (1− γ2)P,

APB = CT −QK,

KTK = D+DT −BTPB.

Remark
If L(z) is a stable transfer function, there exists sufficiently large
K such thatαK (L(z)+K)−1 is s.p.r.

The following lemmas present some useful control theorems
adopted from Lemma 1.
Lemma 2: [1] Define ψ(k1,k0) as the state-transition matrix
corresponding toA(k) in Eq. (1), i.e.,ψ(k1,k0) = ∏k1−1

k=k0
A(k).

Then if ||ψ(k1,k0)||6 1, ∀k1,k0 > 0, the system represented by
Eq. (1) is exponentially stable.
Lemma 3: [1] If A(k) = I − αφ(k)φT(k) in Eq. (1), where
0 < α < 2 andφ(k) is a regressor vector of past inputs and out-
puts, then||φ(k1,k0)||< 1 is guaranteed if there is anL > 0 such
that∑k1+L−1

k=k0
φ(k)φT(k) > 0 for all k. Then Lemma 2 guarantees

the exponential stability of the system represented by Eq. (1).
Definition 4: [1] An input sequencex(k) is said to be persis-
tently exciting (PE) ifγ > 0 and an integerk1 > 1 such that

γmin

[
k1+L−1

∑
k=k0

φ(k)φT(k)

]
> γ, ∀k0 > 0, (2)

whereγmin[P] represents the smallest eigenvalue ofP.
Note: PE is exactly the stability condition needed in Lemma 3.
By using the all previous definitions, lemma, and theorems, the
following theorem is established:
Theorem2: A difference equation

z(k+1) =
(

I −ξ(k)L(z)ξT(k)
)

z(k) (3)

is asymptotically stable for any time-varying vectorξ(k) which
satisfies the PE condition, ifL(z) is s.p.r.

Note that a special case of Theorem 2 whereL(z) = 1 corre-
sponds to Lemma 3.

3. Analysis of the Discrete-Time Feedback Error
Learning

3.1. Feedforward adaptive control method Without Feed-
back Element

The discussion of the feedback error learning method (hence-
forth, it is simply referred as Kawato scheme), from the view-
point of adaptive control, is the main objective of this section.
Fig. 1 illustrates the block diagram of Kawato scheme. From
the previous chapter, the feedforward controllerK2 is chosen to
be identical to the inverseP−1 of P if P is known. SinceP is
unknown, some adaptive schemes forK2 are employed so that
K2 converges toP−1.

Fig. 1. Discrete-time feedback error learning scheme.

Throughout this chapter, the following assumptions are applied:
Assumptions
(A1) The plantP is stable and has stable inverseP−1.
(A2) The upper bound of the order ofP is known.
(A3) k0 = limz→∞ P(z) is assumed to be positive.
(A4) Input signal is bounded and satisfies the PE condition.

The assumption (A1) is rather restrictive in the context of con-
trol system design. This may be relaxed without significant dif-
ficulty, but in this study, this assumption is kept in order to fo-
cus on the intrinsic nature of the Kawato scheme. In the context
of motor control, this assumption is not restrictive because the
plant is always a neuro-muscular system with low order. This
let the computed torque method, which is essentially equivalent
to constructing an inverse model, be applicable.

If k0 is negative in (A3), the subsequent results are valid by
taking−P(z) instead ofP(z). Hence, (A3) is relaxed to the
assumption that the sign of the high frequency gain is known.
For the sake of the simplicity of exposition, however, (A3) is
retained. From the assumption (A4), it is obvious thatξ(k) also
satisfies PE condition.

3.2. Parameterization of unknown systems

To handle adaptation, it is important to decide how to parame-
terize the adaptive system. Throughout this study, the following



parameterization of the unknown systemQ is utilized:

ξ1(k+1) = Fξ1(k)+gr(k), (4)

ξ2(k+1) = Fξ2(k)+gud(k), (5)

u(k) = cT(k)ξ1(k)+dT(k)ξ2(k)+ l(k)r(k), (6)

whereF is any stable matrix andg is any vector with{F,g}
being controllable. The block diagram of this parameterization
is shown in Fig. 2.

Fig. 2. Parameterization ofK2(z).

In Eqs. (4)∼(6), c(k), d(k), andl(k) are unknown parameters to
be estimated, andud(k) is the desired output of this system. It
is easy to see that takingu(k) = ud(k) and appropriate selection
of parametersc(k) = c0, d(k) = d0, andl(k) = l0 can yield an
arbitrary transfer function fromr(k) to ud(k).
The advantage of the parameterization in Eqs. (4)∼(6) is that the
unknown parameters enter linearly in the system description.
The continuous version of this parameterization was first used
in adaptive observer [7].
3.3. Adaptation law
The parameterization of the adaptive feedforward controllerK2

is taken as same as in Eqs. (4)∼(6) . However, instead ofud(k)
in (5), the plant inputu(k) is used:

ξ1(k+1) = Fξ1(k)+gr(k), (7)

ξ2(k+1) = Fξ2(k)+gud(k), (8)

uf f (k) = cT(k)ξ1(k)+dT(k)ξ2(k)+ l(k)r(k), (9)

u(k) = uf f (k)+K1e(k), (10)

whereF is stable and{F,g} is controllable.
In the ideal situation,K2 is identical toP−1. In that case,e(k) =
0, u(k) = uf f (k) = u0(k) = P−1(z)r(k). The true valuesc0, d0

andk0 of c(k), d(k) andk(k), respectively, satisfy

l0 +cT
0 (zI−F)−1g

1−dT
0 (zI−F)−1g

= P−1(z). (11)

The error signale(k) is defined as

e(k) = r(k)−y(k).

The cost function for adaptation is defined as

J(k) =
1
2

k

∑
i=0

e2(i). (12)

The unknown parametersc(k), d(k), l(k) must be updated so
that the error signale(k) decreases.

The usual gradient method gives rise to the updating rule. By
defining

ξ(k) := [ξ1(k)T ξ2(k)T r(k)]T , (13)

θ(k) := [c(k)T d(k)T l(k)T ]T , (14)

the adaptation law of parameters is obtained as

θ(k+1) = θ(k)+
α
K1

e(k)ξ(k). (15)

Note: This is adapted from the continuous-time adaptation al-
gorithm by using gradient method presented by Miyamura [5].
In this case, the desired outputud(k) must be identical to
ud(k) = P−1(z)r(k) because the feedforward controller is as-
sumed to be an inverse of the plantP. SinceP is unknown, so
is ud(k). In Kawato scheme,u(k) is used instead ofud(k). An
essential feature of the present paper lies in the justification of
this attempt.
3.4. Convergence proof
The objective of this section is to prove the convergence of the
system according to the systems parameterization and adapta-
tion law described previously.
The error signal, defined in previous section, can also be written
as

e(k) = r(k)−P(z)u(k).

Hence,

u(k) = ud(k)−P−1(z)e(k),

ud(k) = P−1(z)r(k).

Then the adaptive controller is written as

ξ1(k+1) = Fξ1(k)+gr(k), (16)

ξ2(k+1) = Fξ2(k)+g
(

ud(k)−P−1(z)e(k)
)

, (17)

uf f (k) = cT(k)ξ1(k)+dT(k)ξ2(k)+ l(k)r(k), (18)

where

c(k+1) = c(k)+ α
K1

e(k)ξ1(k),
d(k+1) = d(k)+ α

K1
e(k)ξ2(k),

l(k+1) = l(k)+ α
K1

e(k)r(k).

 (19)

Assume that the true system can be represented as,

z1(k+1) = Fz1(k)+gr(k), (20)

z2(k+1) = Fz2(k)+gud(k), (21)

ud(k) = cT
0 (k)z1(k)+dT

0 (k)z2(k)+ l0(k)r(k). (22)

Then,

uf f (k)−ud(k) = (c(k)−c0)
T ξ1(k) (23)

+(d(k)−d0)
T ξ2(k)

+(l(k)− l0) r(k)

−dT
0 (zI−F)−1gP−1(z)e(k).

Here, the following asymptotic relations are used

ξ1(k) → z1(k),

ξ2(k) → z2(k)−dT
0 (zI−F)−1gP−1(z)e(k).



The relation in Eq. (23) is written as

uf f (k)−ud(k) = ψ(k)Tξ(k)−dT
0 (zI−F)−1gP−1(z)e(k),

where

ψ(k) := θ(k)−θ0 =

 c(k)−c0

d(k)−d0

l(k)− l0

 . (24)

From the relations

u(k) = uf f (k)+K1e(k),

−
[
P−1(z)e(k)+K1e(k)

]
=

ψ(k)Tξ(k)−dT
0 (zI−F)−1gP−1(z)e(k), (25)

which results in

(G(z)+K1)e(k) = ψ(k)Tξ(k), (26)

G(z) :=
(

1−dT
0 (zI−F)−1g

)
P−1(z). (27)

On the other hand, from Eq. (24),

ψ(k+1)−ψ(k) = θ(k+1)−θ(k)

=
α
K1

ξ(k)e(k). (28)

It should be noted that the relation in Eq. (11) implies that

G(z) = l0 +cT
0 (zI−F)−1g. (29)

Combining Eq. (26) and Eq. (28),

ψ(k+1)−ψ(k) =
α
K1

ξ(k)e(k)

=
α
K1

ξ(k)(G(z)+K1)
−1 ξ(k)Tψ(k)

ψ(k+1) = ψ(k)− α
K1

ξ(k)(G(z)+K1)
−1 ξ(k)Tψ(k).

(30)

which is the same form as Eq. (3),i.e.

ψ(k+1) =
(

I −ξ(k)L0(z)ξ(k)T
)

ψ(k),

whereL0(z) is equal to

L0(z) := (G(z)+K1)
−1 α

K1
. (31)

According to Theorem 2, the different equation (30) is asymp-
totically stable, ifL0(z) given by Eq. (31) is s.p.r.K1 is chosen
such thatG(z)+K1 is s.p.r. SuchK1 always exists from Defini-
tion 2 of s.p.r. (See Remark following Lemma 1). IfG(z)+K1

is s.p.r., so isL0(z). Thus, the following fundamental result have
been established:

Theorem3: Under the assumptions (A1)∼(A4), the feedback
error learning method represented by Eqs. (16)∼(19) is converg-
ing, i.e., the controllerK2(z) converges toP−1(z).

4. Discrete-Time Feedback Error Learning with PD
Controller

The powerful ability of DTFEL system is the capability to ap-
ply another controller to the feedback path to improve the sys-
tem performance. In this study, the PD controller is chosen to
improve the robustness of the system. Specifically, it acts like
a disturbance rejector of the system. There are many literatures
dealing with discrete-time PD controller [3].
This controller is used due to the concept adopted from the fact
that the derivative action of the conventional PID controller can
improve the transient response of the system well.
The architecture of the system is the same but, instead of using
the constantK1, the feedback gain is in the form of

K1(z) = Kp +Kd
z−1

z
.

The second term is a discrete-time derivative term consisting of
constant derivative gainKd.
Note that the overall system convergence is still based on DT-
FEL purely. In another words, the analysis of each can be done
separately because the adaptive controller in feedforward path
is obviously outside the loop. The only requirement of the sys-
tem convergence is thatK1(z) is kept to be sufficiently large for
all time.

5. Simulation Results
In this section, the simulation results are illustrated to demon-
strate the effectiveness of the theoretical results obtained in this
study. Three main simulations have been done in order to illus-
trate the improvement of the system. The pulse-transfer func-
tion of the controlling plant is

P(z) =
z+0.2
z+0.3

.

Note that this plant has a stable inverse. The simulation is done
at the sampling period of 10 milliseconds and the adaption of
the parameter is done every 100 milliseconds. In Fig. 3, the DT-
FEL with constant gainK1 is use as a controller. The tracking
performance between the input signalr(k) and the output signal
y(k) is shown. The errore(k) = y(k)− r(k) is shown in Fig.

Fig. 3. The simulation result of the DTFEL system with con-
stant feedback gain.



Fig. 4. The error of the DTFEL system with constant feedback
gain system.

Fig. 5. The simulation result of the DTFEL system with con-
stant feedback gain with system disturbance.

Fig. 6. The simulation result of the DTFEL system with PD
controller with system disturbance.

4. These figures show the convergence of the signal and the
comparison of the tracking performance of the system before
adaptation, from 0 second to about 5.7 second, with after adap-
tation, from 5.7 second to step 10 second. The learning rate is
set to be very low to show the result clearly. In another remain-
ing simulation parts, the higher learning rate is set enabling the
system parameters to be converged within 0.5 second.

The second simulation results shown in Fig. 5 showing the re-
sponse of the same system with additional system disturbance.
It is clearly that the system is no longer stable. This can be sta-
bilize by adding the PD controller as the results shown in Fig. 6.

It is clearly shown that the low-cost PD controller can improve
the tracking performance of the DTFEL very well.

6. Conclusion
In this study, the “Discrete-Time Feedback Error Learning”
(DTFEL) is demonstrated. The layout of this paper is following
that of the traditional continuous version [5].

The mathematical required to analyze the stability of the DT-
FEL system, where the controlling has stable inverse, are stud-
ied and proved. The simulation results show that if the sys-
tem have sufficiently large disturbance, the system response is
poor. This can be solved by adding another controller in the
feedback path. The additional controller, i.e. PD controller is
adopted to the system to solve the stability problem of the sys-
tem. The simulation results guarantee the improvement of the
system response. The derivative action of the PD controller acts
like a disturbance rejector of the system smoothing the response
curve.

The additional PD controller does not affect the convergence of
the overall DTFEL system. The analysis of each can be done
separately because the adaptive controller in feedforward path
is obviously outside the loop.

The auto-tuning PD controller for DTFEL systems, the stability
of DTFEL for noninvertible-stable plant and the extension of
DTFEL for plant with time-delay will be the future researches.
The new algorithms for solving the control problems and im-
proving the system performance are also the open-problems.
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