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Abstract: Sliding mode control (SMC) is an effective method of controlling systems with uncertainties which satisfy the so-

called matching condition. However, how to effectively handle mismatched uncertainties of systems is still an ongoing research

issue in SMC. Several methods have been proposed to design a stable sliding surface even if mismatched uncertainties exist in

a system. Especially, it is presented that robustness and efficiency of SMC for linear systems with mismatched uncertainties

can be improved by reducing mismatched uncertainties in the reduced-order system. The reduction method needs a new sliding

surface with an additional component based on Lyapunov redesign technique. In this paper, a stable sliding surface which

contains additional component to reduce the influence of mismatched uncertainties, is introduced. It is designed by using linear

matrix inequalities that guarantees the stability of the system. A numerical example demonstrates the validity of the proposed

scheme.
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1. Introduction
SMC is an effective method of controlling uncertain systems.

Since the system trajectories are constrained on the predeter-

mined sliding surfaces in sliding mode, SMC has a good per-

formance. The system behavior is insensitive to the internal

parameter variations and external disturbances, if uncertain-

ties and/or disturbances of the system satisfy the so-called

matching condition in this sliding mode. It is possible since

uncertainties of the system satisfying the matching condi-

tion are completely nullified in sliding mode. Although the

system is in sliding mode, the effect of mismatched uncer-

tainties of the system remains so that adaptation method,

robust method and backstepping method have been used to

handle the system with mismatched uncertainties in SMC [1]

[3] [4] [5]. Recently, it is shown that robustness and efficiency

of SMC for linear systems with mismatched uncertainties can

be improved via the reduction of mismatched uncertainties

[1].

In sliding mode, an original uncertain system can be changed

to the equivalent reduced-order system [7]. Although matched

uncertainties are nullified, mismatched uncertainties still re-

main in this reduced-order system. Here, mismatched un-

certainties can be divided into the matched part, which is in

the range space of the input matrix, and the rest part in the

reduced-order system [1]. Then, a sliding surface should be

designed to nullify the matched part and to stabilize with

respect to the rest part.

In this paper, we show a stable sliding surface, which con-

tains an additional component to nullify the effect of the

match part, can be designed via LMIs if the bound of the

rest part satisfies the structured norm bound. A numeri-

cal example is given to explain the proposed method and to

demonstrate its validity.

This paper is organized as follows: Section 2 briefly intro-

duces uncertain systems considered in this paper. In Sec-

tion 3, the sufficient condition of stable sliding surface is

presented in terms of LMI. Section 4 introduces the reduc-

tion method of mismatched uncertainties as well as presents

the sufficient condition of new sliding surface with an addi-

tional component. In Section 5, sliding mode control law to

guarantee a reaching condition is presented. In Section 6, a

numerical example is given to illustrate design procedure as

well as its validity. Finally, Section 7 serves as a conclusion.

2. Problem statement
Consider the following linear uncertain system:

ẋ(t) = (A + ∆A)x(t) + B [(I + ∆B)u(t) + ∆f(t, x)] , (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control

input and ∆ denotes uncertainties. A and B are known

constant matrices with appropriate dimensions. Generally,

there exists a invertible transformation z = Tx such that

transforms the system dynamics Eq. (1) to its regular form.

Therefore, without loss of generality, the system is described

in the regular form such as
[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

][
x1

x2

]
+

[
∆A11 ∆A12

0 0

][
x1

x2

]

+

[
0

B2

]
{(I + ∆B2)u + ∆fm} , (2)

where x1 ∈ Rn−m and x2 ∈ Rm are the state vectors,

u ∈ Rm is control input and ∆fm ∈ Rm represent the

lumped matching uncertainties. ∆A11 and ∆A12 become

mismatched uncertainties. A11, A12, A21, A22 and B2 are

known constant matrices with appropriate dimensions. Fur-

thermore, bounds of ∆fm and ∆B2 are assumed to be known.

Assumption 1: Uncertainties ∆fm,∆B2, ∆A11 and ∆A12

are bounded in Euclidean norm by known functions as, ∀(x, t) ∈
Rn×R+, ||∆fm|| ≤ ρm(x), ||∆B2|| ≤ 1−εb and ||∆A11 ∆A12|| ≤
η where εb and η are positive constants.



Assumption 2: The pair (A, B)

A =

[
A11 A12

A21 A22

]
, B =

[
0

B2

]
,

is controllable, and the matrix B2 has full rank.

Assumption 2 is necessary for the existence of the equivalent

control in Section 6.

3. Design of sliding surface using LMI
A linear sliding surface is usually defined as

σ(x) = Sx = 0,

or without loss of generality

σ(x) = K̄x =
[

K I
] [

x1

x2

]
= 0, (3)

where S ∈ Rm×n and K ∈ Rm×(n−m). In sliding mode,

σ(x) = 0,

x2 = −Kx1, (4)

and

ẋ1 = (A11 + ∆A11)x1 − (A12 + ∆A12)Kx1, (5)

which is the reduced-order dynamics. If the uncertainties,

∆A11 and ∆A12, are admissibly norm-bounded and struc-

ture as following:

Assumption 3: Assume that

∆A11 = DrFrEr1,

∆A12 = DrFrEr2,

where Dr, Er1 and Er2 are known real constant matrices

of appropriate dimensions, and Fr is an unknown matrix

function with Lebesque-measurable elements and satisfies

F T
r Fr ≤ I, in which I is the identity matrix.

Under the above condition, the sliding surface Eq. (3), which

stabilizes the reduced-order system Eq. (5) in the presence

of mismatched uncertainties, can be designed in terms of

LMI [3]. In order to show the proof, we need to recall the

following matrix inequality.

Lemma 1 [2]: Given constant matrices D and E and a

symmetric constant matrix S of appropriate dimensions, the

following inequality holds:

S + DFE + ET F T DT < 0,

where F satisfies F T F ≤ R, if and only if for some γ > 0

S + [γ−1ET γD]

[
R 0

0 I

][
γ−1E

γDT

]
< 0.

The main result on the global asymptotic stability of the

reduced-order system with mismatched uncertainties is sum-

marized in the following theorem.

Theorem 1: If there exist a symmetric and positive def-

inite matrix Pr, some matrix K and some positive γ such

that the following LMI are satisfied, then the reduced-order

system Eq. (5) is asymptotically stabilizable via the sliding

mode surface Eq. (3):



Ψr ∗
Er1Qr − Er2Mr −γI ∗

DT
r 0 −γ−1I


 < 0, (6)

where Ψr = QrA
T
11 + A11Qr −MT

r AT
12 −A12Mr, Qr = P−1

r

and Mr = KP−1
r , where * denotes the transposed elements

in the symmetric positions.

Proof: Consider Lyapunov function candidate

V = xT
1 Prx1, (7)

where Pr is a time-invariant and positive definite matrix.

Clearly, V is positive definite and radially unbounded. The

time derivative of V is

V̇ = ẋT
1 Prx1 + xT

1 Prẋ1. (8)

By substituting Eq. (5) into Eq. (8), we obtain as follow

V̇ = xT
1 Φrx1 + xT

1 (∆A11 −∆A12K)T Prx1

+xT
1 Pr(∆A11 −∆A12K)x1, (9)

where Φr = AT
11Pr + PrA11 − KT AT

12Pr − PrA12K. If the

right hand side of Eq. (9) is negative definite uniformly for

all x1 and t ≥ 0 except at x1 = 0 then the reduced-order

dynamics Eq. (5) is asymptotically stable about its zero

equilibrium. Therefore, the following inequality is valid.

Φr + (∆A11 −∆A12K)T Pr + Pr(∆A11 −∆A12K) < 0. (10)

Then, applying Assumption 3 to (10) yields

Φr + ΣT
r F T

r DT
r P + PDrFrΣr < 0, (11)

where Σr = Er1−Er2K. According to Lemma 1, the matrix

inequality Eq. (11) holds for all Fr satisfying F T
r Fr ≤ I if

only if there exists a constant γ1/2 > 0 such that

Φr +

[
γ−1/2Σr

γ1/2(PrDr)T

]T

×
[

γ−1/2Σr

γ1/2(PrDr)T

]
=

Φr +

[
Σr

DT Pr

]T [
γ−1I 0

0 γI

][
Σr

DT Pr

]
< 0. (12)

Applying Schur complement to Eq. (12) result in



Φr ∗ ∗
Σr −γI ∗

DT
r Pr 0 −γ−1I


 < 0. (13)

Define the following transformation matrix as:



P−1
r 0 0

0 I 0

0 0 I


 (14)

and take a congruence transformation. This yields



P−1
r ΦrP

−1
r ∗ ∗

ΣrP
−1
r −γI ∗

DT
r 0 −γ−1I


 < 0. (15)

Denoting Qr = P−1
r and Mr = KP−1

r yields the LMI Eq.

(6). This completes the proof of the theorem.



4. Design of new sliding surface
In this section, a reduced-order dynamics associated with

a new sliding surface with an additional component is pre-

sented. Additionally, the sufficient condition of new stable

sliding surface in terms of LMI is derived. Consider the fol-

lowing new sliding surface:

σ(x) = Kx1 + v + x2. (16)

In sliding mode, the reduced-order dynamics will be

ẋ1 = (A11 + ∆A11)x1 − (A12 + ∆A12) {Kx1 + v} . (17)

First of all, mismatched uncertainties ∆A11 and ∆A12 should

be divided into the matched part, which is in the range space

of A12, and the rest part. That is, Dr should be divide into

the projection on the range space of A12 and the rest such

as

Dr = A12Tp + D̄r.

Therefore, mismatched uncertainties ∆A11 and ∆A12 are

rewritten as follows

∆A11 = A12∆̄A11 + ∆Aru1, (18)

∆A12 = A12∆̄A12 + ∆Aru2, (19)

where ∆̄A11 = TpFrEr1, ∆̄A12 = TpFrEr2, ∆Aru1 = D̄rFrEr1

and ∆Aru2 = D̄rFrEr2. Then, the reduced-order dynamics

Eq. (17) becomes

ẋ1 = A11x1 + A12

[
−(I + ∆̄A12) {Kx1 + v}

+∆frm] + ∆fru, (20)

where

∆frm = ∆̄A11x1,

∆fru = ∆Aru1x1 −∆Aru2 {Kx1 + v} .

Suppose, as usual, that the uncertainties are admissibly norm-

bounded.

Assumption 4: There exists ε > 0 such that ||∆̄A12|| ≤
1−ε. And, uncertainty ∆frm is norm-bounded as ||∆frm|| ≤
ρrm||x1||.
We define a candidate of Lyapunov function V (x1) mapping

from Rn−m to R such as

V (x1) = xT
1 Px1, (21)

where P ∈ R(n−m)×(n−m) is a positive definite matrix. Fur-

thermore, suppose the following additional component

v =
ρ̄2

rm

2εζ
AT

12Px1, (22)

where ζ is a positive scalar and ρ̄rm = ρrm +(1−ε)||K||. For

simplicity of notation, a new function is defined as follows

w = 2AT
12Px1. (23)

Then, the global asymptotic stability of the uncertain reduced-

order system Eq. (20) is summarized in the following theo-

rem.

Theorem 2: Assume that Assumption 4 is satisfied and

the additional surface component v is given such as Eq. (22).

If there exist a symmetric and positive definite matrix P,

some matrix K and some positive γ and ζ such that the fol-

lowing LMIs are satisfied, then the uncertain reduced-order

Eq. (20) is asymptotically stabilizable associated with the

new sliding mode surface Eq. (16):




Ψ ∗ ∗ ∗
Ω −γI ∗ ∗

D̄T
r 0 −γ−1I ∗

Q 0 0 −ζ−1I


 < 0, (24)

where Ψ = QAT
11 + AT

11Q −MT AT
12 − A12M , Ω = Er1Q −

Er2M − ρ̄2
rm
4ε

ζ−1Er2A
T
12, Q = P−1 and M = KP−1, and *

denotes the transposed elements in the symmetric positions.

Proof: Consider the time derivative of the Lyapunov

function Eq. (21).

V̇ (x1) = xT
1 (A11 −A12K)T Px1 − xT

1 P (A11 −A12K)x1

+2xT
1 PA12

{
−(I + ∆̄A12)v − ∆̄A12Kx1

+∆frm}+ 2xT
1 P∆fru. (25)

Using Assumption 4 and Eq. (22), the third term of Eq.

(25) satisfies the following inequality

2xT
1 PA12

{
−(I + ∆̄A12)v − ∆̄A12Kx1 + ∆frm

}

≤ −wT (I + ∆̄A12)v + ||∆̄A12K||||w||||x1||
+ρrm||w||||x1||

≤ − ερ̄2
rm

4εζ
wT w + {(1− ε)||K||+ ρrm} ||w||||x1||

= −
[

ρ̄rm
2
||w||

||x1||

]T [
ζ−1 −1

−1 ζ

][
ρ̄rm

2
||w||

||x1||

]

+ζ||x1||2

≤ ζ||x1||2 = ζxT
1 x1. (26)

Therefore, we obtain the following condition from Eq. (25)

and Eq. (26)

V̇ (x1) ≤ xT
1 (A11 −A12K)T Px1 + xT

1 P (A11 −A12K)x1

+ζxT
1 x1 + 2xT

1 P∆fru

= xT
1 Φx1 + ζxT

1 x1 + 2xT
1 PD̄rFrEr1x1

−2xT
1 PD̄rFrEr2(Kx1 + v), (27)

where Φ = AT
11P + PA11 −KT AT

12P − PA12K.

Using Eq. (22),

2xT
1 PD̄rFrEr1x1 − 2xT

1 PD̄rEr2(K +
ρ̄2

rm

2εζ
AT

12P )x1

= xT
1 PD̄rFrΣx1 + xT

1 ΣT F T
r D̄T

r Px1, (28)

where Σ = Er1 − Er2K − ρ̄2
rm
2ε

ζ−1Er2A
T
12P . Therefore, we

obtain the following condition from Eq. (27) and Eq. (28)

V̇ (x1) ≤ xT
1 Φx1 + ζxT

1 x1 + xT
1 PD̄rFrΣx1

+xT
1 ΣT F T

r D̄T
r Px1. (29)

If the right hand side of Eq. (29) is negative definite uni-

formly for all x1 and t ≥ 0 except at x1 = 0 then the



reduced-order dynamics Eq. (20) is asymptotically stable

about its zero equilibrium. Therefore, assume that the fol-

lowing inequality is valid.

Φ + ζI + PD̄rFrΣ + ΣT F T
r D̄T

r P < 0. (30)

The conversion of Eq. (30) to LMI Eq. (24) follows the

procedure in Theorem 1.

5. Sliding mode control
In the previous section, when the uncertain system Eq. (2)

was in the sliding mode, the sliding mode surface was de-

signed to guarantee the asymptotic stability of the reduced-

order system in terms of LMI. Next, we need to find feedback

control law u to drive state trajectories of the system onto the

sliding surface. This means that the control law is designed

to guarantee the existence of sliding mode or the reaching

condition. Before proceeding, for notational simplicity, let

the proposed sliding surface be redefined as

σ(x) = Kx1 + v + x2 = Kx1 +
ρ̄2

rm

4εζ
w + x2

= (K +
ρ̄2

rm

2εζ
AT

12P )x1 + x2 = KT x1 + x2, (31)

where KT = K +
ρ̄2

rm
2εζ

AT
12P . The feedback control law satis-

fying reaching condition is summarized in the following the-

orem.

Theorem 3: For the system Eq. (2) satisfying Assump-

tion 1 and 2, the following control law is considered:

u =

{
ueq if σ(x) = 0,

ueq − ρ(x) B2σ(x)
||B2σ(x)|| if σ(x) 6= 0,

(32)

where

ueq = −B−1
2

[
KT

I

][
A11 A12

A21 A22

]
x,

ρ(x) >
(1− εb)||ueq||+ η||B−1

2 KT ||||x||+ ρm(x)

εb
.

Then, the reaching condition of the sliding surface Eq. (31)

is satisfied.

Proof: See reference [1].

6. Numerical example
In this section, we give the results of simulation study. Con-

sider the following uncertain system which satisfies Assump-

tion 1, Assumption 2 and Assumption 3:

ẋ =




a11 + ∆a11 a12 + ∆a12 a13 + ∆a13

a21 + ∆a21 a22 + ∆a22 a23 + ∆a23

a31 + ∆a31 a32 + ∆a32 a33 + ∆a33


x

+




0

0

1


 {(I + ∆B)u + ∆f} , (33)

where



a11 a12 a13

a21 a22 a23

a31 a32 a33


 =




0.1 0.8 0.2

1.2 2.6 0.8

−0.4 1.7 0.6


 ,

[
∆a11 ∆a12

∆a21 ∆a22

]
=

[
0.036 −0.03

0.161 −0.12

][
sin πt + 1 −1

− cos πt cos πt

]
,

[
∆a13

∆a23

]
=

[
0.036 −0.03

0.161 −0.012

][
sin πt

0

]
,




∆a31

∆a32

∆a33


 =




0.03 + 0.14 sin 2πt

0

0.19 cos 1.3πt


 ,

∆B = 0.1 cos 1.5πt, ∆f = 0.7 sin 2πt + 0.4.

In sliding mode, the reduced-order dynamics of Eq. (33) can

be described as
[
ẋ1

ẋ2

]
=

[
0.1 0.8

1.2 2.6

][
x1

x2

]
+

[
∆a11 ∆a12

∆a21 ∆a22

][
x1

x2

]

+

[
0.2

0.8

]
x3 +

[
∆a13

∆a23

]
x3. (34)

In the reduced-order dynamics, mismatched uncertainties

can be decomposed such as

[
∆a11 ∆a12

∆a21 ∆a22

]
= DrFrEr1,

[
∆a13

∆a23

]
= DrFrEr2,

where

Dr =

[
0.036 −0.03

0.161 −0.12

]
, Er1 =

[
1 0

−1 1

]
,

Fr =

[
sin πt −1

0 cos πt

]
, Er2 =

[
1

0

]
.

Also, Dr should be divided into the projection on
[

0.2 0.8
]T

and the rest as follows

Dr =

[
0.2

0.8

]
[0.2 − 0.15] +

[
−0.004 0

0.001 0

]
.

The sliding surface should be designed by Theorem 2 under

the given conditions that:

P =

[
3.1514 0.0315

0.0315 3.9924

]
, K =

[
3.0595

13.1628

]T

, ζ = 1.1643.

In Figure 1, we compared with the simulation results of the

sliding mode controllers which are associated with the slid-

ing surfaces designed by Theorem 1 and Theorem 2, respec-

tively. simulation results show that if mismatched uncer-

tainties are split, the distortion, which is occurred by mis-

matched uncertainties,is more considerably decreased. This

clearly demonstrates the robustness improvement of reduc-

tion of mismatched uncertainties over no-reduction of it.

This result means that the robustness of the proposed method

is better than no reduction method.

7. Conclusion
A new design method of the sliding surface for linear systems

with mismatched uncertainties is proposed. This scheme en-

ables us to handle mismatched uncertainties by means of

offering compensation for the matched part which is in the



range space of the input channel of the reduced-order sys-

tems. Additionally, the stabilizing criteria of sliding surface

was formulated in terms of LMI. Furthermore, effectiveness

of the proposed method is demonstrated by a numerical ex-

ample.
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Fig. 1. Simulation results of mismatched uncertainty reduc-

tion and noreduction
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