
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION

Today rapid growth of human needs in personal assistant in

order to handle every day tasks, such as electric home
appliance, communications, privacy, and entertainment has
been detected. The personal assistant systems also called
personal robots are studied extensively [1-4]. As mentioned in
literature: Personal robots should be feature human-like
characteristics in their behavior, regarding motion, intelligence,
and communication [5]. One of the engineering tasks in
personal robots area is robot communications and integration
into home network system. This paper considers open
architecture modular based robot consists of modules
representing fully or partially autonomous system [6].
Therefore such robot is considered as special class of
distributed systems and problem of appropriate choice of
middleware arises.

A number of solutions have been proposed [7-19]. There
are four group typically considered. First group is
transactional middleware. Transactional middleware [7, 8]
uses two-phase commit protocol [9] to implement distributed
transactions. It can simplify the construction of distributed
systems; however it has restricted portability issues and
creates undue overhead if there is no need to use transactions.
Second group is message-oriented middleware [10, 11]. It
supports the communication between distributed system
components by facilitating message exchange. It is well-suited
for implementing distributed event notification. However there
is limited support for heterogeneity and scalability. Third
group is procedural middleware [12]. It supports the
distributed environment by implementation of remote
procedure call. However, there are serious problems in
reflexivity and scalability. Fourth group is object and
component middleware [13-19]. The idea here is to make
object-oriented principles, such as object identification
through references and inheritance, available for the
development of distributed systems. Object-oriented
middleware provides powerful component model. However,
the scalability and heterogeneity of existing solutions is still
restricted.

Choice of middleware has to be made under fact that robot
environment presents some restrictions and requirement. First,
middleware has to be portable over different kinds of
platforms existing today and in future. Hence it has to be
simple and light, providing only general functionality. For

example, embedded system lacks some of the functions
provided by workstation. However, both of them have to
provide some set of basic services, while allowing applications
communicate with each other. From other hand middleware
has to allow engineer to use power of particular platform.
Hence it has to be scalable meaning that functionality could be
extended easily without loosing compatibility. Second,
middleware has to allow using different network interfaces,
such as Ethernet, IEEE1394 [20], RS232, USB [21], CAN
[22] and so on. Hence, in opposite to classic middleware, it
has to include network controlling functionality. Third, robot’s
middleware has to be more reliable comparing to general
distributed systems.

Since existing solutions cannot satisfy above requirements,
we decided to develop new robot specific middleware. The
proposed solution based on two layer scheme. First layer is
Network Adaptation Layer (NAL). It deals with network
interfaces, providing naming, addressing and routing services.
It provides transparent data transfer and allows above layers
act without doubt of network heterogeneity. Second layer is
Streaming Layer (SRL). It deals with application management,
marshalling and coordination. For the sake of reliability it also
deals with binding service and provides migration service.
Several interfaces per application are supported, so extension
can be made easily.

In order to achieve high performance together with
portability into different platforms, the most functions has to
be implemented in C language, while critical parts, such as
scheduling, priority assignment has to be made using native
functions of tested platforms.

2. MIDDLEWARE STRUCTURE

In this section we define middleware structure as shown in

figure 1.
This middleware is separated into network control level

(NAL) application control level (SRL). Communications
between SRL and NAL goes through interface provided by
NAL. This guarantees that details of implementation of
hardware-dependent part are hidden from the SRL and makes
porting of middleware or adding new network interface
component easy without affect to performance of SRL.

Architecture of Streaming Layer as Core of Personal Robot's Middleware.

Vitaly Li*, Seongho Choo**, Kiduk Jung***, Donghee Choi****, Hongseong Park*****
Dept. of Electrical and Computer Eng., Kangwon National University

192-1 Hyoja 2 Dong, Chuncheon, 200-701, Korea
Email: {vitaly*, somebody**, toumai***, blessdh****, hspark*****}@control.kangwon.ac.kr

Tel: +82-33-250-6346 Fax: +82-33-242-2059

Abstract: This paper, proposes concept of personal robot middleware core also called streaming layer. Based on openness and
portability, the streaming layer is proposed in order to meet requirements of different kinds of applications. The streaming layer
architecture provides effective management of data flows and allows integration of different systems with ease regardless software
of hardware platform. With extensibility support additional features can be build in without affect to performance. Therefore,
heterogeneous network support, real-time communications, embedded boards support can be easily achieved. In order to achieve
high performance together with portability into different platforms, the most functions has to be implemented in C language, while
critical parts, such as scheduling, priority assignment has to be made using native functions of tested platforms.

Keywords: personal robot, middleware, streaming layer, heterogeneous network,

mailto:@control.kangwon.ac.kr

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Figure 1 Middleware Structure

Main functions of NAL are naming, addressing and routing.

By naming we mean the global name of hardware platform
(node) over distributed system. It has to be unique and provide
location of remote module clear. The addressing service from
other hand provide name of the node over particular network
interface meaning that for set of nodes connected by such
network interface, location is unambiguous. The example of
such addressing is IP. For the set of connected nodes, usage of
unique IP address allows to locate certain node precisely.
Hence, the one node has name over distributed system and
address for every network interface it use. Finally routing is a
process of location of certain remote node by its name.
Routing involves two functions: transmission data over the
path to the destination by source node and forwarding data to
destination for intermediate node. While first function is clear,
forwarding data is more complicated operation due to
heterogeneity of the network. Forwarder has to receive data
from one network interface, decide appropriate network
interface for forwarding and send data to that interface. Since
different network interfaces have different parameters such as
maximum packet size, bandwidth and so on, it is non trivial
task; however it is out of the scope of paper.

Functionality of SRL is defined by application needs. It
provides application management, marshalling, coordination,
binding service and migration service. It is described in details
in next section.

Figure 2 Streaming Layer Architecture

3. STREAMING LAYER ARCHITECTURE

The overall architecture is shown in figure 2. Detail
explanation of each part is given below.

3.1 Application management

We define application interface as independent set of
variables and functions. Application management (AMS)
provides application interface registration/deregistration,
location, data transmission to/from application interface and
procedure invocation by application interface. Every interface
defines set of specific descriptors based on functionality it
provides. Hence, upon registration of the application interface,
unique ID over same set of descriptors is generated. For
example, if there are two vision interfaces with exact same
functionality they will get different IDs, while motor control
interface might have ID coincident with one of the vision
interface. Thus couple of ID and interface descriptors uniquely
defines application interface, making location service easy.
AMS operates with one information structure – application
repository that keeps information for identification and
location of application interfaces. The data about application
interface is added on registration and removed upon
deregistration. The data transmission to/from application
interface and procedure invocation are handled by platform
specific API.

3.2 Marshalling service

Marshalling service (MSS) provides packetization of data
transmitted to remote application. It defines types of the
packets and headers structure.

3.3 Coordination service

Coordination service (CS) provides admission management.
Whenever source application interface wish to establish
connection to remote application interface, CS verifies
existence of the remote application, agreement in parameters,
matching functionality of the remote application interface with
requested from source application interface and access rights
of local application interface.

3.4 Binding service

Specific character of the most robot application is
periodicity. Therefore long life connections with periodic
exchange of the data, procedure invocation, request/response
exists. In order to reduce unnecessary overhead, binding
service (BS) exists. Whenever bind request arrives binding
service inserts bind record to the binding table in both side of
connection link. Such record consists of local application
interface and remote application interface currently bind. Such
connections have highest priority and serves without involving
coordination service each time transmission occurs. SRL
support two types of binding: binding by couple and binding
by descriptors set. Binding by couple suppose one-to-one
communication link. Binding by descriptors set allow
one-to-many link.

3.5 Migration service

For the sake of the agents system and robots vitality
(feature of the robot to remain functional after removing some
part of it) migration service (MS) is introduced. The main
functionality is to allow application interface migrate to

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

another node keeping established connections. On receiving
migration request MS send notification messages to the
network suspending all transmission to migrant. Then
application interfaces is moved to another node with
notification of target node’s MS, which updates all
information structures (application repository, binding table)
and sends update notification to the network. Every node’s
MS on receiving such notification updates information
structures and resume transmission to migrant if any.

4. NOTES

In this section we discuss the scalability, real-time and

portability issues.

4.1 Scalability
As shown by figure 1 one application may have several

application interfaces. So, by registering application that
manages other applications in some manner, functionality of
proposed middleware can be extended. We call such
application extension. The number of extension levels
restricted only by operating system. From other hand, special
cases (such as embedded sensor board that has static
connection without needs in routing, forwarding binding and
restricted multitasking) can be handled by reducing
functionality of SRL. This can be achieved by several
techniques, such as embedding application functionality into
SRL and disabling unnecessary services.

4.2 Real-time

We introduce simple priority assignment by using binding
table and handling periodic tasks with highest priority. Also,
advanced scheduling can be implemented as extension. Since
several routes from source to destination exist, high priority
tasks are always routed with respect to minimum delay, while
low priority tasks routed with respect to available bandwidth.

4.3 Portability

As mentioned above, proposed middleware has simple
structure and independent layers. Therefore the porting of
middleware can be made easily. Note that the NAL mostly has
to be ported with respect to hardware layer, while the SRL
with respect to operating system features.

5. CONCLUSION

We propose the architecture of middleware for modular
based personal robot. In particular, architecture and functional
description of Streaming Layer is proposed. The design of
Streaming Layer is made based on various need of personal
robot platform. The portability and scalability is in focus as
well as heterogeneity of the network. Possibility to use
extensions, assign priority to application interfaces, migration,
and on-line coordination makes proposed middleware
powerful solution for needs of personal robot’s applications.
High portability potential makes proposed middleware also
suitable for use on various platforms including embedded and
real-time systems. Therefore, proposed middleware
architecture is suitable for distributed environments such as
modular based personal robot.

ACKNOWLEDGMENTS

This research was partially supported by the Brain Korea
21 Program through Kangwon National University.

REFERENCES

[1] Rondey A. Brooks, "A robust layered control system for

a mobile robot," IEEE Journal of Robotics and
Automation, RA-2(1):14-23, 1996

[2] Makelainen, T, Kaikkonen, J, Hakala, H," Interfacing
functional modules within mobile robots,” Intelligent
Robots and Systems '91.'Intelligence for Mechanical
Systems, Proceedings IROS'91. IEEE/RSJ International
Workshop on, 3-5 Nov 1991

[3] Fryer, J.A, McKee, G.T, Schenker, P.S, "Configuring
robots from modules: and object oriented approach ",
Advanced Robotics, 1997. ICAR'97. Proceeding. 8th
International Conference on, 7-9 Jul 1997

[4] Ishiguro, H., Kanda, T., Kimoto, K, Ishida, T," A robot
architecture based on situated modules" Intelligent
Robots and Systems, 1999. IROS'99. Proceedings. 1999
IEEE/RSJ International Conference on. Volume:3,1999

[5] T.Fukuta, R. Michlini, V. Potkonjak, S. Tzafestas, K.
Valavanis, and M. Vukorbrativic, "How far away is
"Artificial Man?"", IEEE Robotics & Automation
Magazine. pp. 66-73, Mar 2001

[6] Chatila, R, Ferraz de Camargo, R, "Open architecture
design and inter-task/inter module communication for an
autonomous mobile robot," Intelligent Robots and
Systems'90. 'Towards a New Frontier of Applications',
Proceedings. IROS'90, IEEE International Workshop on,
3-6 Jul 1990

[7] Hudders E.S., “CICS: A Guide to Internal Structure”,
Wiley, 1994

[8] Hall C.L., “Building Client/Server Application Using
TUXEDO”, Wiley, 1996

[9] Bernstein P.A., Hadzilacos V., Goodman N.,
“Concurrency Control and Recovery in Database
Systems”, Addison Wesley, 1987

[10] Gilman L., Schreiber R., “Distributed Computing with
IBM MQSeries”, Wiley, 1996

[11] Hapner M., Burridge R., Sharma R., “Java Message
Service Specification. Technical Report”, Sun
Microsystems, http://java.sun.com/products/jms, Nov
1999

[12] Open Group, editor, “DCE 1.1: Remote Procedure Calls”,
The Open Group, 1997

[13] Object Management Group, “The Common Object
Request Broker: Architecture and Specification Revision
2.2”, Feb. 1998

[14] Orfali R., Harkey D., Edwards J., “Instant CORBA”,
Wiley, 1997

[15] Box D., “Essential COM”, Addison Wesley Longman,
1998

[16] JavaSoft, “Java Remote Method Invocation
Specification”, revision 1.50, jdk 1.2 edition, Oct.1998

[17] Moonson-Haefel R., “Enterprise Javabeans”, O’Reilly
UK, 1999

[18] Chung P., Huang Y., Liang D., Shin J., Wand C.-Y.,
Wand Y.-M., “DCOM and CORBA: Side by Side, Step
by Step and Layer by Layer”, C++ report, pp18-29, Jan.
1998

[19] Emmerich W., “Engineering Distributed Objects”, John
Wiley & Sons, Apr. 2000.

[20] IEEE standard for a High Performance Bus, IEEE std
1394-1995, IEEE std 1394a-2000

[21] Universal Serial Bus Specification revision 1.1, Sep. 23,
1998

[22] CAN Specification Part A and Part B

http://java.sun.com/products/jms

