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1. INTRODUCTION 
Collision detection problems and their variants are of vital 

importance in many fields, such as computer animation, 
physical simulation, computer simulated environments, solid 
modeling and robot planning, especially with the emergent 
fields of virtual reality [1-3]. The problems concern that fact 
that two impenetrable objects cannot share a common region. 
In computer animation, object simulated in the environments 
change motions according to the contact constraints and 
impact dynamics. It is critical to computer the response in time 
when object collide. In physical simulation, complex inter- 
actions of hundreds of parts in the virtual prototyping system 
are simulated based on physics and geometry. It is important 
to locate the intersection points when parts collide in order to 
provide proper reaction. In virtual reality, a physical environ- 
ment is simulated such that humans can readily visualize, 
explore and interact with the virtual objects in the environment. 
The virtual world will seem more believable if objects can 
receive expectable natural behavior presented as feedback 
from the objects in the virtual environment such as push, pull 
and grasp. In order to create a sense of touch between the 
user’s hand and a virtual object, contact or restoring forces are 
generated to prevent penetrating into this virtual object. These 
forces are computed by first detecting if a collision or pene- 
tration has occurred, then determining the contact point on the 
object surface.  

Typically the proximity query problems have two parts. 
The collision query algorithm and separation distance compu- 
tation. A collision query determines intersection if geometric 
contact has occurred between given two or more object. A 
distance query computes the minimum Euclidean distance 
between two objects. An architectural design system may 
perform distance queries to verify that certain functional 
components are separated by some minimum distance at all 
points [4-5]. Algorithms for such queries have been exten- 
sively studied in the literature. While a number of specialized 
algorithms have been designed to handle a pair of a special 
class of primitives, the most general algorithms are based on 
bounding volume hierarchies. A bounding volume hierarchy is 
a tree of bounding volumes whose collective leaf nodes 
spatially enclose all the model geometry, and in which each 
parent spatially encloses all the geometry covered by its 
descendent leaf nodes as shown in Fig. 1. 

Different bounding volume hierarchies are primarily cate- 

goryized by the choice bounding volume type at each node of 
the tree. Typical examples of bounding volumes include axis- 
aligned boxes [6] and spheres, and they are chosen for to the 
simplicity of finding collision between two such volumes. 
Hierarchical structures used for collision detection include 
cone trees, discretely-oriented polytopes and octree [7], sphere 
trees [8-9], R-trees and their variants [10], tree based on 
S-bounds, object oriented bounding box [11] etc. Other spatial 
representations are based on BSP tree [12] and its ex- tensions 
to multi space partitions [13], spatial representations based on 
space-time bounds [14-15] and many more. All of these 
hierarchical methods do very well in performing contact test, 
whenever two objects are far apart. However, when the two 
objects are in very close proximity, parallel close proximity 
and multiple contacts, these algorithms either use sub- division 
techniques or check very large number of bounding volume 
pairs for potential contacts. 

Fig. 1 A bounding volume hierarchy of spheres 

In this paper, we present hierarchy of oriented rounding 
volume for fast proximity queries. Designing hierarchies of 
new bounding volumes, we use to combine multiple bounding 
volume types in a single hierarchy. A major motivation in the 
design of hybrid type hierarchies is to include simple shapes 
like sphere for fast overlap tests and tight fitting bounding 
volumes like oriented bounding box to reduce the number of 
tests. A bounding volume corresponds to geometric shape 
composed of a core primitive shape grown outward by some 
offset such as the Minkowski sum of rectangular box and a 
sphere shape. The resulting new bounding volume is like a 
rounded box. We represent it using the rectangle, its center, 
and a radius. In the parallel proximity query test, we examine 
the performance comparisons among types of bounding 
volumes.
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2. BOUNDING VOLUME HIERARCHIES 

Considering the model consists of four line segments 
named 1a through 4a , as shown in Fig. 2(a). The model is not 
completely connected. It has two disconnected pieces. The 
model can be recursively partitioned into a hierarchy, shown 
in Fig. 2(b), such that the top-level node is the entire model, 
the leaf nodes are the individual primitives elements, and each 
node equals the union of its children. The example shown in 
Fig. 2(b) is just one of many ways to partition the set of 
primitives. These nodes can be labeled as shown in Fig. 2(c).  
The top-level mode is the symbol for the whole model, the 
name of any first child is the name of the parent with a “0” 
subscript appended, and the name of second child has a “1” 
subscript appended. Thus, the sequence of “0”s and “1”s 
describes a path of “left” and “right” choices, starting at the 
root, which leads to the given node. This naming convention 
extends to any number of children using the digits “2”, “3”, 
etc. These nodes are named subsets of the original model. The 
sets A, A0, A1, A00, A01 and so forth can be assigned bounding 
spheres. The bounding volume for a point set Ax is given the 
symbolic name VAx. Thus the bounding spheres form their 
own hierarchy, shown schematically in Fig. 2(d). We can 
redraw the original model A along with each level of the 
bounding volume hierarchy. Fig. 3(a) shows A with VA, the 
sphere covering the entire model. Fig. 3(b) shows A0 and A1
with their bounding spheres. Finally, Fig. 3(c) shows the leaf 
nodes of the hierarchy and the model primitives they enclose. 
Now consider model B. The partitions of model B are given 
names in manner similar to that of model A, and the structure 
of the bounding volume hierarchy is also similar to that of 
model A as shown in Fig. 1. 
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Fig. 2 Model A and symbolic representation 

Given the two models and their placements in the world 
space, the simplest approach to perform a collision query is to 
test each of the four line segments in A against each of the five 
line segments in B, requiring 20 pairwise primitives overlap 
tests. While this approach is reasonable for relatively small 
models such as these, we cannot perform exhaustive pairwise 
testing on models which have millions of primitives. Instead, 
we perform a trivial test by checking the top-level bounding 
volumes for overlap. If the models are a little closer together, 
as shown in Fig. 4(a), the top-level spheres touch and more 
work is needed. There are several choices for our next step. 
We will choose to test the children of VA, which are VA0 and 
VA1, against VB, as is shown in Fig. 4(b). In this processing, 
we say that we descend A to move from a comparisons bet- 

ween the pair (VA, VB) to two comparisons, between the pair 
(VA0, VB), and between the pair (VA1, VB). Since VA0 doesn’t 
touch VB, the point set A0 doesn’t touch the point set B, and 
likewise for A1 and B. Since A0 and A1 together make up the 
entire model A, there is no contact between A and B. We 
could have chosen to test the children of VB against model A, 
as shown in Fig. 4(c), with the same result that A and B are 
disjoint.
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Fig. 3 Graphical display of the Model A 
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Fig. 4 Situation of the models do not touch 

When the models are actually in contact, we will not be 
able to use bounding volume tests to bound the models 
entirely apart. However, the bounding volume tests still enable 
us to eliminate whole groups of potential contacts from con- 
sideration. From this point, we could solve the contact leaf 
nodes of two models independently, and merge their results 
for the final answer. This formula can applied recursively, and 
is the basis for the divide-and-conquer approach used in 
bounding volume hierarchy based collision detection. 

3. BOUNDING VOLUME ALGORITHMS 
3.1 Cost of proximity queries 

The fundamental operations of a proximity query are the 
bounding volume overlap test and the primitive overlap test. 
The time required to perform a collision query can be appro- 
ximated as [ 16] 

ppvv TNTNT ×+×= (1)

where vN and pN are number of overlap tests for bounding 
volumes and primitives, respectively, and vT and pT are the 
average times required to perform each such test. Queries 
using simple bounding volumes, such as axis aligned 
bounding boxes, exhibit large vN and small vT , while those 
using complex bounding volumes such as convex hull or 
oriented bounding boxes have smaller vN and large vT . Also, 
using simple bounding volumes tends to increase pN , since 
the leaf nodes of simple bounding volumes are less likely to 
bound the models apart than those of complex bounding 
volumes. It is not immediately obvious from this equation, 
given the opposite tendencies of vT and vN , what is the best 
choice of bounding volume type. Several factors contribute to 
the cost of proximity query. Models with many polygons tend 
to be more expensive to query than models with fewer 
polygons. Proximity queries are more expensive when the 
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models are closer together than when they are farther apart. 
Thus the cost of a proximity query depends not only on the 
size of the number of polygons in the two models and the size 
of the number of touching primitive pair found, but also on the 
nature and degree of the proximity of the models. Therefore, 
no bounding volume yields optimum performance for proxi- 
mity queries in all situations. A major motivation in the design 
of the oriented rounded bounding boxes is to include simple 
shape like sphere for fast overlap tests and tight fitting 
bounding volume like oriented bounding boxes to reduce the 
number of test. 

3.2 Oriented rounded bounding box 
Basic algorithm to fitting an oriented rounded bounding 

box to a model is first to choose an orientation for the bound- 
ing box, and then to choose a center, minimal edge lengths, 
and radius that enable it to cover the model. Suppose we have 
selected an orientation for our bounding box, Let the three 
vectors xv , yv , and zv be aligned with the face normal of 
the bounding box. Also, let kp be the thk vertex of the model 
being fitted, k ranges from 1 to n . Now project all the 
vertices of the model, kp , onto each of the vectors. The 
upper and lower extremes along each axis is given by 

)(max xxkxu pv ⋅= , )(max xxkxl pv ⋅=

)(max kykyu pv ⋅= , )(max xykyl pv ⋅= (2)
)(max kzkzu pv ⋅= , )(max kxkxl pv ⋅=

The thi axis of the bounding box is aligned with iv , and 
the bounding box’s width along this axis will be given by 

ii lu − , and the center point c  for the bounding box is given 
by 

2/})()(){( zzzyyyxxx lululu vvvc +++++=         (3)

Finally, the radius vector r for bounding sphere and the 
center point zcp be aligned z axis are given by 

2/)( zzz lu vr ⋅−= , 2/)( zzz lu +=cp              (4) 

Now repeat the upper and lower length, ),,( zyxu ,
),,( zyxl aligned with r and zcp . This is processing to find 

bounding box area more tightly.  

)0,( 22 dzrMaxOfTwouu ii −−=                 (5) 

)0,( 22 dzrMaxOfTwoll ii −+=                  (6) 

where MaxOfTwo is macro to find the maximum number 
between the two numbers. Fig. 5 shows the algorithm codes 
for growing max. and min. points with corner compensation.  

We use statistical techniques to computer orientation for the 
bounding box. Our approach is based on first and second order 
statistics summarizing the vertex coordinates, as used by [17]. 
They are the mean, µ , and the covariance matrix, C , respect- 
tively. Let the vertices of the i th triangle be the points ia ,

ib , and ic . Our fitting algorithms use the eigenvectors of the 
covariance matrix, C , to initially compute an bounding box 
that encloses the underlying geometry. For fitting rounding 
box, the smallest of the three dimensions of the bounding box 
becomes the rectangle normal direction. This direction is most 
likely to be the perpendicular to a nearly flat cluster of 
triangles, and will allow the flat shape of the rounding box to 
fit the geometry tightly. The other directions fix the orient- 

tation of the rectangle and the rectangle dimensions are grown 
appropriately to enclose all the geometry. The dimensions of 
the rectangle are initially determined so that they enclose 
triangles along the two side projections of the rounding box. 

Fig. 5 Algorithm for finding bounding box parameters 
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We use a top-down strategy to create the nodes of our hie- 

rarchy. This means that the hierarchy is build from the root 
node downward. The triangles in each node of the tree, 
starting with the root that contains all of the triangles, are split 
into two subsets that become the children nodes of this node as 
shown in Fig. 2. Nodes are recursively subdivided unless they 
contain only a single triangle, which corresponds to a leaf 
node of the hierarchy. Our splitting rule is the same used for 
an [17]. A splitting axis is chosen, and a plane orthogonal to 
the axis is used to partition the triangles into two sets, 
according to which side of the plane their center point lies on. 

3.3 Implementation 
We have implemented all our algorithms as part of a 

general purpose framework for performing proximity queries 
using bounding volume hierarchies. The framework has been 
implemented in C++ with OpenGL functions, and runs on top 
of PC’s. The basic C++ “struct” types defining a model, a 
bounding volume node, a face, and a vertex. The model block 
is a simple C++ class which contains model-specific infor- 
mation and pointers to the aforementioned arrays. The hie- 
rarchies or tree data can be store the memory block for fast 
access time. Fig. 6 shows the graphic-user-interface program. 

Fig. 6 Implemented program with graphic user interface 

4. BENCHMARKS AND ANALYSIS 
We used number of benchmarks to measure the perfor- 

mance of our new bounding volume and compare them with 
other bounding volumes. Our goal was to include some 
real-world benchmarks that consist of a variety of configu- 
rations between the models. These include models in parallel 
close proximity as well as models moving away from each 
other. It is evident that lager models are generally more 
expensive to query against than smaller models. Also, proxi- 
mity queries take more work when the model are close than 
when they are widely separated. These tendencies are dia- 
grammed in Fig. 7(a). Every point on each surface is exactly a 
given ε distance from the other surface. This is one of the 
most challenging configurations that collision detection sys- 
tems typically encounter. For this type of configuration, the 
amount of work to process a collision query is a sensitive 
function of the gap between the surfaces. The closer the sur- 

faces are together, the more finely they must be approxi- 
mated in order to bound them apart, requiring us to descend 
the bounding volume hierarchies of both models are deeply. 
Because every point on each model is close to the other model, 
a reduction in the gap requires a query to descend to a greater 
depth and every additional level descended doubles the 
number of nodes visited.  

(a) Parallel close proximity      (b) Schematic of Exp. 
Fig. 7 Schematic of parallel close proximity experiment 

Fig. 7(b) shows a schematic diagram of an experiment 
involving two concentric spheres. In this experiment we 
placed a 20,000 polygon sphere of unit radius inside a 20,000 
polygon sphere of radius ε+1 . For each choice of ε , we 
performed 100 collision queries on these spheres. For each 
query, we gave the spheres random orientations. The smaller 
sphere begins at the origin, and grows in increments of 0.001 
units until surface separation reaches ε = 4. Fig. 8 shows a 
plot, for each bounding volume type, of the number of 
bounding volume tests over a range of surface separations, ε .
For the extremely large values of ε , there is a certain mini- 
mal depth to which we must descend the bounding volume 
hierarchies of the outer sphere in order to bound it away from 
the point at its center. However, once this situation is reached, 
it provides significant clearance for the object in the middle. In 
case of extremely small values of ε , tiny gap brings the leaf 
nodes of the bounding volume hierarchies have been desce- 
nded to their leaves, and decreasing ε even further cannot 
cause more bounding volumes to be tested, because there are 
no additional children to be visited. The slope of oriented 
bounding box in the log-log plot is measured -1.26, whereas 
the slope for new bounding box is almost exactly -1.58.  

Another benchmark is diagrammed in Fig. 9. In this experi- 
ment, the surface separation was used at ε = 0.01. The sphere 
begins at the 3.0−=y , and travels along y -axis until its 
center reaches 0.1=y . The sphere is also given random 
orientation, and a collision query performed which finds all 
the contact pairs between them. In Fig. 10 we show the plot of 
the number of triangle contact pairs as function of the y -
coordinate of the sphere. The general trend of the plot is to rise 
sharply at approximately 0.0=y . The numbers of contacts for 
each bounding volume type are zero, but the distributions of 
the number of bounding volume tests are qualitatively differ- 
ent, which are shown in Fig. 10. Examination of the parallel 
close proximity shows that these two distributions overlap a 
little, but the points for oriented bounding box are generally 
above the points for our new bounding volume, implying that 
our bounding volume are more efficient than oriented 
bounding box at pruning the bounding volume test. 
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Fig. 8 Bounding volume tests vers. surface separation 

(a) 2.0−=y      (b) 1.0−=y      (c) 35.0−=y
Fig. 9 Bounding volume tests for parallel close proximity 

Fig. 10 Bounding volume tests vers. position movement 

5. CONCLUSIONS 

In this paper, we have introduced a new family of bounding 
volumes based on sphere and oriented bounding box, and used 
them to perform parallel close proximity. This bounding 
volume provides varying tightness of fit to the underlying 
polygonal model. We also examine some of the trade-offs of 
using new bounding volumes by analyzing benchmarks results 
comparing the performance of oriented bounding boxes, and 
show that new bounding volumes can significantly outperform 

the oriented bounding boxes as gap size decreases in the 
parallel close proximity. The benchmarks showed that our new 
bounding volume is 5 times faster than previously known 
method.
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