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1. INTRODUCTION 

 
Recently, researches on automation of highway 

maintenance and construction vehicles have been quite 
actively conducted. Fusing robotic technology to utility 
vehicles yields a new concept of robotic vehicles such as a 
crack sealing vehicle, trash pick up vehicle, and an 
autonomous corn-handling vehicle[1,2]. Several vehicles have 
been already commercialized.   

The advanced highway maintenance and construction 
technology (AHMCT) center at UC Davis has been known to 
be one of the leading research groups of conducting researches 
on this subject. One of their current projects is to automate and 
develop the snowplow vehicles. Snowplow vehicles are 
heavily used in mountain areas of having heavy snows in the 
winter. One typical snowplow vehicle is shown in Fig.1. To 
fully automate this kind of vehicle, automatic steering control 
should be developed along with GPS localization, GIS 
analysis, and sensor implementation.  

The ultimate goal is to develop the snowplowing vehicle 
that can autonomously follow the guardrail of the highway 
without collision. The vehicle has to overcome the situation 
where the guardrail is hidden under the pile of snow. This 
requires accurate lateral control of the vehicle by maintaining 
a desired constant distance from the guardrail. 

There have been many researches about lateral control of 

the vehicles. ∞H control and yaw rate feedback control 
methods for lateral positioning system have been proposed 
[3-5]. Experimental studies of robust lateral control of 
highway vehicles have also been conducted [6,7].  

In our previous researches, neural network control 
technique has been applied for two wheel steering control of 
the bicycle model of the vehicle. Neural network with PD 
controllers has performed well to compensate for uncertainties. 
However, under the condition of heavy piles of snow, the front 
wheel steering may not be efficient. The rear steering control 
is also required for the better lateral control by helping the 
vehicle to push against snow. Many researches have been also 
considered the four wheeled drive vehicles. Fuzzy control 
methods have been used for steering four wheeled vehicles 
[8,9]. 

 

 
Fig. 1 CALTRAN’s snowplow vehicle 

 
 

In this paper, as an extension of our previous researches, the 
neural network control technique is applied to a four wheeled 
drive bicycle model of the vehicle. The LQR control method is 
used to obtain optimal controller gains. Even though the LQR 
controller can stabilize the system and works quite well, 
tracking performance under snowplowing load becomes very 
poor. A neural network controller is introduced to compensate 
for uncertainties. Neural network has been known as a 
powerful nonlinear controller and used intensively in the area 
of robot and motion control applications [9,10]. Recently, 
successful real time neural network applications have been 
achieved [11-14].  

Simulation studies have been conducted and position 
tracking performances are compared with those of the LQR 
controller under the virtual plowing condition. 
 
2. FOUR WHEEL DRIVE VEHICLE DYNAMICS 

 
The vehicle is steered by both the front and the rear wheel. 

For simplicity, the vehicle dynamics is considered as a bicycle 
model as shown in Fig.2. The dynamic equations are derived 
based on the references [15,16]. 
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Fig.2. Bicycle model of vehicle 
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where m is  total mass of the vehicle, φ is a yaw angle, 

fδ  is a steering angle of the front wheel, rδ  is a steering 

angle of the rear wheel and 

1L  is a distance from the center of the front wheel to COG,  

2L  is a distance from the center of the real wheel to COG, 

xV  is a velocity of the vehicle along x direction 

yV  is a velocity of the vehicle along y direction 

xfF is a longitudinal force of the front wheel along x direction 

xrF is a longitudinal force of the rear wheel along x direction 

yfF is a lateral force of the front wheel along y direction 

yrF is a lateral force of the rear wheel along y direction 

xfF is a longitudinal force of the front wheel along x direction 

zI  is a yaw moment of inertia along z direction. 
 
Configuration of slip angles are shown in Fig.2. 

 
Fig. 3 Slip angle model 

 
Slip angles are defined by 
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where fα is a slip angle of the where front wheel and rα  is a 

slip angle of the rear wheel. 
Lateral forces are defined by assuming that the left and the 
right tires are same as 
 

ffyf CF αα2=  , rryr CF αα2=       (3) 

 
where fCα  and  rCα  are cornering stiffness. 

Under the assumption that the vehicle is moving at a constant 
velocity in longitudinal direction and the steered angles are 
small, then 1cos ≈fδ 1cos, ≈rδ ,

ff δδ ≈sin , rr δδ ≈sin . 

Steering angles are considered as a control input and a yaw 
angle φ  and a lateral position y  are outputs to be 
controlled. 

Let 
.
φω = and combining equations (1), (2), and (3) 

yields the MIMO system that has the following state space 
representation of the vehicle dynamics as 
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where 1L  and 2L  are the length indicated in Fig.2 
We see from [17] that the difference from the front steering 
model is the addition of an input column of rδ in (4). 

 
3. LQR CONTROLLER FOR LATERAL 

POSITION 
 

The LQR control block diagram for lateral position tracking 
is shown in Fig. 4. The goal of the LQR control method is to 
minimize the following objective function 
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+=                 (5) 

 
where RQ,  are the weighting matrices. Those RQ,  
values are selected based on trial and error processes. The 
ultimate goal is to control the lateral position y. 
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Fig. 4. Lateral control block diagram  

 
The lateral position error is formed as 
 

yye dy −= .                         (6) 

 
The yaw angle error is formed as 
 

φφφ −= de .             (7) 

  
Those errors are multiplied by controller gains found by 
the LQR control method. The controller inputs for the 
front steering fu  and the rear steering ru are defined 
as 

φφ ekeku ryf yy +=  ,  

φφ ekeku ryr yr +=  ,          (8) 

 
where fyf kk φ, , ryr kk φ,  are controller gains obtained 

by the LQR algorithm. For simplicity, we have the relationship 
u=δ by not considering dynamics of a steering mechanism. 

 
 

4. NEURAL NETWOK CONTROL 
 
4.1 Neural network control structure 
 

In this paper, we are implementing an on-line learning 
algorithm for the neural network. The idea is that a neural 
network compensates for uncertainties by minimizing the 
errors. The objective function is minimized in on-line fashion 
by adding compensating signals from the neural network to 
the LQR controller output. Control inputs are defined by 
adding neural network outputs  Nu  to (8) as 

Nfyf uu +=δ ,   

Nrr uu += φδ  ,            (9) 

where NrNf uu ,  are neural network outputs. 

Fig. 5 shows the neural network control block diagram. 
Neural network outputs are added to the LQR controller 
outputs.  At each sampling time, weights of the neural 
network are updated to generate new compensating signals. 
The key issue here is how to implement on-line learning and 
control. To achieve on-line control, certain fast computing 
power will be required.  
 

 
Fig.5. Neural network control block diagram  

 
4.2 Neural network learning 

 
For neural network learning, we have used a general 

feed-forward structure that has an input layer, a hidden layer, 
and an output layer shown in Fig. 6. For the control 
application, 4 input buffers, 6 hidden units and 2 output units 
are used. Increasing the number of inputs and hidden units did 
not help to improve the performance in our simulations. 
 

 
Fig. 6. Neural network structure 

 
For a nonlinear function at a hidden layer and an output layer 
we have used the hyperbolic tangent function as 
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x
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=  .          (10) 

 
Here, neural network learning algorithm is derived. Since we 
are doing on-line learning and control, selecting the training 
signal is very important. Typically, the bicycle model of the 
vehicle is a squared MIMO system that two control inputs has 
to satisfy two different outputs simultaneously. 

If ),,,,,,(
......
δφφφyyyf is the system dynamics, 

equation (4), (8) and (9) can be represented as follows: 
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where T
NrNf uuu ][= and T

rf ][ δδδ = . 

So here we define the training signal of neural network as the 
sum of outputs of PD controllers. 
 

φφφφ ekekekekv ryyrfyyf +++=  .    (12) 

 
The objective function is defined as 
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Differentiating (13) with respect to weights, we have 
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The update equation in the back propagation algorithm is  
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5. SIMULATION STUDIES 
 
5.1 Vehicle model 
 

The following parameters of the vehicle are used for 
simulation studies. 
 

Table 1. Parameters of the vehicle 
M(kg) Iz(Kgmsec^2) Cf, Cr(Kg/rad) L1(m) L2(m)
2612.7 810.2 4082.4 1.45 1.94 
 
Here we assume the constant longitudinal velocity at xV = 
10.973km/sec.  
Then the state space representation of (4) becomes 
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Controller gains are selected by the LQR method for the 
simulation studies. We have found the controller gains as 
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0194.00238.0

K . 

 
The vehicle is required to follow the desired lateral trajectory. 
A load is assumed to be present. The desired lateral position is 
3m. 
 

5.2 LQR control method 
 

Fig. 7 shows the tracking performance of LQR controllers.  
Different tracking responses of selecting gains 
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0  are plotted. We see that the 

large value r gives the good tracking performance in the aspect 
of overshoot and settling time before 15 seconds. But when 
load is present after 15 seconds, tracking performance became 
the worst. We also altered the value of Q matrix, but Q=I is 
found to be the best. We found that the value of Q matrix is 
more sensitive than that of R. Small change in Q results in bad 
tracking performance. Since this is a coupled system, gain 
changes affect both tracking performances of the position and 
the yaw angle. It is clearly shown that offset tracking errors 
occur when load appears as shown in Fig. 7. 

 
Fig. 7. Lateral position tracking by LQR controllers 

 
Next is the comparison result of lateral control between 

two wheel drive and four wheel drive vehicles. We see here 
from Fig 8. that both cases show tracking errors when load is 
present. However, a less lateral position tracking error has 
been observed for a four wheel drive steering vehicle even 
though a two wheel drive vehicle shows no overshoot at a 
transient response. This explains that the four wheel drive 
vehicle system pushes more to the lateral direction to achieve 
the fast settling time when load is present. We also observed 
that a two wheel drive vehicle become unable to track desired 
trajectory with other LQR controller gains. 
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Fig.8. Lateral position tracking of two(dash line) and 

four(solid line) wheel drive vehicles 



5.3 Neural network control method  
1. Snowplowing load is 138N. 

To minimize those tracking errors, the same experiment 
has been conducted by adding a neural network controller. 
For the neural network parameters, 

9.0,000055.0 == αη are used and those values are 
optimized by trial and errors. Fig. 9 shows the lateral 
position tracking results for the LQR control method and 
the neural network control method. We clearly see by 
comparison that a tracking error is minimized by the neural 
network controller. Fixed LQR controller cannot minimize 
the tracking error when load is present after 15 seconds. 
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Fig. 9. Lateral position tracking of LQR(dotted line) and 
Neural network control(solid line). 

 
2. Snowplowing load is 691N. 

Now the load has been increased after 15 seconds. We 
see from Fig. 10 that the neural network controller 
outperforms in tracking performance while the LQR 
controller cannot recover from deviation. Even though load 
is increased 5 times, a position tracking error is 
compensated fast by the neural network controller. 
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Fig. 10. Lateral position tracking. 

 
6. CONCLUSIONS 

 
This paper presented lateral tracking control simulation 

studies of the autonomous four wheel drive vehicle. The 
simplified bicycle model has been used for simulation studies.  

LQR controllers are designed for the optimal gains. In 
addition, neural network controllers are introduced to 
minimize tracking errors due to the present load. 

Simulation studies show that the neural network controller 
outperforms over the LQR controller under present load 
conditions. We observed that the two wheeled drive vehicle 
often went unstable when load is present. The four wheeled 
drive vehicle performs better than two wheel drive vehicle 
specially when load is present. It turns out that the neural 
network controller is robust to variation of load. 
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