
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION

The mobile robots like snake robots are playing a critical

role in many applications. Researchers have hopes of creating
robots that can detect mines, explore Mars, or search for
people trapped beneath an earthquake-damaged building.
Serpentine mechanisms offer unique capabilities on earth to
applications such as bridge inspection, search and rescue
operations. Snakes motion capabilities different from many
other animals. It can use its body as legs, arms or fingers [1, 2].
This unique feature of snakes offer snake robots as a useful
tool in many real applications like inspection of broken
buildings and pipes. It can also be used in places where human
movement is restricted .The wave motion of snakes can push
the obstacles and create its own way for further movement.
Unlike many mechanical locomotives, movement of snake
robots is not straight; it can turn to a side where there is a way
to move further. The mechanical based snake robots are
complex to design because of their many degrees of freedom
[3, 4]. This requires complex and careful motion planning.
Although the many of degrees of freedom of serpentine robots
supply great functionality, they also supply a challenging
research problem of how to coordinate all of the actuators in
the robot to yield purposeful motion[5] .To implement this
wave like motion of snakes, we have developed a snake robot
prototype with LEGO Mindstrorm toolkit[6]. Our main
approach here is to control and synchronize the snake
movement effectively using concurrent programming model.
Many microcontroller and mechanical based robots lacks the
flexibility to control the snake movements. The main obstacle
in such approaches is co-coordinating between individual units
(Figure.1) of snake robot and flexibility in generating robot
locomotion; also such methods are more expensive and time
consuming.

2. RELATED WORKS

The snake robot is an active area of research in recent years.
To generate flexible movements, some robots make use of
rubber-joints. This is to bend in arbitrary directions and to
make the snake robot’s body very flexible, as in GMD snake
[3].There were many other robots developed over the years. In
case of its locomotion, many of these robots lacks the features
of program controlled concurrent model to generate wave-like
motion. Some robots were designed to generate sine wave
motion using microcontroller based programs [8]. Robots
were developed to move on the surface of water or land, but
use a system of coupled oscillators to generate wave like

motion [9]. The commonly used locomotion control methods
are trajectory based methods and heuristic methods. Many of
such implementations use a simulation based methods to
control the robot movement.

3. DESIGN REQUIREMENTS

Snakes move by pushing their body against environment.

To achieve this, snake robot sections (Figure.1), must generate
serpentine locomotion or lateral undulation. Lateral undulation
is a sequence of left-right wave movements to accomplish real
snake’s locomotion. Generating sine wave locomotion is the
basic issue in designing snake robot. Also it is important to
move the robot in left, right, circular, rectilinear, concertina,
serpentine and side winding [10] based on robot user
requirements. The second issue is about co-coordinating
between two adjacent sections of the robot. This is important
to generate the serpentine locomotion. The third issue is about
robot performance in case of robot section or unit (Figure.1)
failure. In case of any robot section or unit failure, the robot
may break into pieces and may lead to great loss in case of
critical applications. In such cases the robot must continue to
operate along with its broken sections rather than total robot
failure. Adding or removing a robot section or unit from the
robot and retaining the same robot behavior are also our
design consideration. The mechanical design of the robot is
also equally important to support the above mentioned
features.

4. PROPOSED ROBOT ARCHITECTURE

4.1 Hardware Configuration

The physical prototyping of snake robot developed using
LEGO toolkit as shown in figure 2. In the present model, we
have used 4 motors as actuators and 4 angle sensors as sensors.
The angle sensors are used to co-ordinate the sequence of sine
wave movements in a particular direction and in a particular
path along with motors, together form a unit in our robot. Each
motors work as actuator to drive a unit of snake robot. Here a
unit is a primitive individual element of robot. Many units
together make a section as shown in the figure 1. In general a
snake may have N sections (1≤k≤N) and each section may
have M units (1≤p≤M).

The total number of units = N×M
=Total number of motors needed.
In the present design there are only two units (motors) per

section. Altogether there are 4 units with one motor/unit. All

Multi-Thread based Synchronization of Locomotion Control in Snake Robots

Laxmisha Rai * and Soon Ju Kang **
 School of Electrical Engineering and Computer Science, Kyungpook National University (KNU), Korea

 *(Tel : +82-53-940-8664; E-mail: laxmisha@ee.knu.ac.kr)
** (Tel : +82-53-950-6604; E-mail: sjkang@ee.knu.ac.kr)

Abstract: In this paper, we present an approach to control the locomotion of snake robot with concurrent programming model
constructed using threads and semaphores. The multi-thread based concurrent programming model adds the flexibility to design
and synchronize the movement of snake robots as compared with microcontroller and mechanical based approaches. We have
designed a physical snake robot using LEGO sensors and actuator blocks and the wave motion of the snake robot is generated by
multi-thread based concurrent programming under RT-Linux. The different robot movements in a desired direction along with
different types of snake movements are achieved using angle sensors.

Keywords: Mobile Robot, Thread, Synchronization, Concurrent Programming, Serpentine

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

motors run at equal speed [3]. The mechanical structure of the
robot is equally important to realize the wave like motion
of the robot. The selection of number of units in a particular
section and number of sections in the robot depends on the
robot designer’s choice. The present robot moves by pushing
its body against the surface. The wheels connected to the each
unit of the robot support this locomotion; this naturally makes
the last unit (Nth) as head and first as tail. Although, in the
present model all units acts independently, the head has no
special function as in many robots, where the head defines the
path. The figure 2 shows the photographic view of the robot.

Fig. 1 Schematic diagram to explain robot sections and units.

Fig. 2 LEGO snake robot

Fig. 3 View of snake robot.

A hardware interface is already developed in our lab to
support many sensors and actuators of LEGO kit. This mainly
includes touch sensors, light sensors, angle sensors, motors etc.
The API (Application Programming Interface) which is
developed in our lab supports many fundamental features to
use these sensors and actuators in the present model. [7].A
typical embedded computer system with LEGO sensors and
actuator interfacing can be shown as shown in figure 4. The
PC104 is an embedded computer standard and commonly used
with LEGO systems. The PCI 104 is suitable for development
of autonomous embedded robot control applications.

Fig. 4 An embedded computer system with LEGO sensors and

actuators.

4.2 Software Architecture
 The present model is implemented in RT-Linux based dual
kernel environment as shown in figure 5. This architecture
support both real time and non-real time tasks execution. The
FIFO and shared memories are IPC (Inter-Process
Communication) modules to support communication between
real-time and non-real-time tasks. Also, GUI based user
interface can be provided to control the robot movements.

Fig. 5 RT-Linux Dual Kernel Architecture.

To emulate the snake behavior, threads and semaphores are
used. The program uses maximum N (1≤k≤N) number of
threads. The wave movement of the snake is realized by
understanding the relationship between two adjacent sections,
k and k+1 as shown in figure 1.Threads and semaphores were
used to synchronize this relationship between two adjacent
sections. In the present approach, N numbers of threads are
required in a robot with N sections. The pseudo code of the
program is shown below:

main (){
 initialize_motors_sensors ();
 initial__calibration ();
 initialize_semaphores ();
 thread_section_1 ();
 ….
 ….
 thread_section_N();
 semaphore_destroy ();
 end_ calibration();
}

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

The Figure.6 illustrates the robot unit movements in particular
module of the program. This is the sequence of motor/unit
movements when the entire code is executed at least once. In
the initial calibration phase, the all motors turn in a particular
direction with an angle value of Φ. As shown in the figure,
when the motor 1 is running in right direction motor 2 is
running in left direction and vice-versa. This is same for
motors 3 and 4.
 In the thread section phase, the motors run continuously
with an angle of 2Φ inside the while loop and synchronization
between the units of two threads is achieved using semaphores
as shown in the above code. In this case, thread section
modules executes continuously. A counter may be provided to
run the motor for a particular period of time. The end
calibration section is needed to bring back the robot to its
original position. The major difference between calibration
sections to the thread sections is the angle senor value. In case
of calibration sections the robot unit is turns left or right by
an angle of Φ, where as in case thread section , by 2Φ. In
this robot the for every angle sensor value (AS Value) of 5 the
robot turns with 22.5 degrees.

Fig. 6 Figure to understand the sequence of robot unit
movements in different modules of the program.

 In the above code, the SPEED is the speed of the motors in
each unit of snake maintained at a constant level. The speed
can be changed dynamically during the movement of the robot.
The L(Left) and R(Right) indicate the direction of movements.
The statement set_rotation_handler (angle_sensor(S (k+1, p)),
ASValue); sets angle sensor of unit p of section k+1 with
required angle Φ (with equivalent AS Value) to generate
sine-wave. The statement run_motor(S (k+1, p), L, SPEED);
turns the unit p in section k+1 of snake robot in left direction
with speed value of SPEED. However it is important that mass
is homogeneously distributed along the length of the snake
robot and also the body retains symmetry among its contacts
between two sections [8].

5. EXPERIMENTAL EVALUATION

5.1 Testing and Results
 The present robot used wheels for its movement. And we
have tested the movement of robot for sine- wave like motion.
The robot is tested for to exhibit real snake behavior. The
robot generated the different kinds of snake movements as
shown in figure 7. The different movements (a, b, c, d) are
generated with different angle sensor values. The table.1
illustrates various robot movements generated by setting
different angle sensor values to different motors (M1 to M4)

Table 1. Angle sensor values for different robot movements.

 M1 M2 M3 M4
AS Value(7.a) 3 3 3 3
AS Value(7.b) 9 9 9 9
AS Value(7.c) 12 9 6 3
AS Value(7.d) 3 6 9 12

Fig. 7 Different types of snake locomotion generated with

different angle sensor values
(a) Rectilinear (b) Serpentine (c) and (d) Concertina

5.2 Advantages and Limitations

The model proposed in this paper has numerous advantages
as shown in table 2. The basic advantages are controllability,
reusability, better performance, flexibility and cost
effectiveness. As compared with mechanical or
microprocessor based robots the proposed model is more
flexible and controllable. The number of threads required is
directly proportional to the number sections in the robot, leads

//Thread for Section k+1
start_section_k+1() {
 while (1){
 sem_wait(&sem_k);
 set_rotation_handler (angle_sensor(S (k+1, p)), 2*ASValue)
 run_motor(S (k+1, p), R, SPEED);
 set_rotation_handler (angle_sensor(S (k+1, p+1)), 2*ASvalue)
 run_motor(S (k+1, p+1), L, SPEED);
 sem_post(&sem_k+1);
 }
 thread_exit(NULL);
}

//Thread for Section_k
 start_section_k () {
 while (1) {
 sem_wait(&sem_k+1);
 set_rotation_handler (angle_sensor(S (k, p)), 2*ASValue)
 run_motor(S (k, p), R, SPEED);
 set_rotation_handler(angle_sensor(S (k, p+1)), 2*ASValue)
 run_motor(S (k, p+1), L, SPEED);
 sem_post(&semk);
 }
 thread_exit(NULL);
}

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

to many threads and semaphores. This may cause some delay
of execution between robot sections.

Table 2. Advantages of the proposed model.

Controllability The ‘S’, ‘O’ (Circular), rectilinear,

serpentine and concertina shaped
movements can be easily generated
using the angle sensor. The angle sensor
connected to the each robot unit
enhanced the total controllability of the
snake robot. The speed of the robot can
be changed dynamically. Also, different
sections can be operated with different
speeds.

Reusability The present model can be easily
extended to N number of sections. Each
section module act as a reusable
component.

Performance In case of physical damage/failure of any
section, the robot continues to work
without effecting the robot behavior or
total robot failure.

Flexibility Compared to mechanical or
microprocessor based robots, the
programming modeled robots are more
flexible in terms of control, user
understandability and real-time
implementation. Also the necessary
intelligence can be provided easily with
program support.

Cost The robot’s behavior can be easily
modified using the present programming
model without adding any additional
physical components.

6. CONCLUSION

Many snake robots were already developed with defined

head and tail. Usually head defines the path for its body. This
method has some disadvantages. If the robot's head fails
during its operation, then the rest of the body also stops
operation. The present model overcomes these limitations.
Each unit or sections can be designed to operate
independently. We have implemented angle sensors and
motors to realize the behavior of the snake. Our purpose is to
create a model which can be used in many real-life
applications and to realize multithreaded concurrent
programming. The forces generated during its locomotion are
of little importance and it is neglected here. In this paper we
shown the design of a LEGO based snake robot and its
programming implementation. The wave-like movement of
snake is effectively generated by using programming
constructs like semaphores and threads with effective use of
angle sensors. Also, the present programming model can be
applied to robots where complex concurrent locomotion is an
absolute requirement.

ACKNOWLEDGEMENTS

This work was supported by grant No. R01-2003-000-10252-0
from the Basic Research Program of Korea Science and
Engineering Foundation.

REFERENCES

[1] Linda Dailey Paulson: Biomimetic Robots. IEEE

Computer 37(9): 48-53 (2004) September 004,
Volume 37, Number 9.

[2] Choset and W. Henning, A Follow-the-Leader Approach
to Serpentine Robot Motion lanning, ASCE Journal
of Aerospace Engineering, 1999

[3] Paap, Karl L, Christaller, Thomas; Kirchner, Frank,
A Robot Snake to Inspect Broken Buildings,In
proceedings of the 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS
2000), (2000), p. 2079 – 2082

[4] Shigeo Hirose and Edwardo F. Fukushima, Snakes and
Strings: New Robotic Components for Rescue
Operations, Tokyo Institute of Technology, 2-12-1
Ookayama Meguro-ku,JAPAN,
 www.iser02.unisa.it/papers/k3.pdf

[5] Kevin J. Dowling, Limbless Locomotion: Learning to
Crawl with a Snake Robot, Ph.d Theses, The Robotics
Institute, Carnegie Mellon University 5000 Forbes
Avenue,Pittsburgh,PA-15213,
www.solarbotics.net/library/pdflib/pdf/limbless_locomot
ion.pdf

[6] LEGO Home Page www.legomindstorms.com
[7] Gi Hoon Jung, Do Hoon Kim, Sung Ho Park, Ok

Gu Kim , Soon Ju Kang , Experimental Software
Engineering Course for Training Embedded Real-Time
Systems, SERP ’02 , International Conference
Proceedings, p.410-416

[8] Mark W. Sherman , Sine-Wave Locomotion in a Robotic
Snake Model Form and Programming,
http://arctangent.8k.com/snake/snakerobot.pdf

[9] Alessandro Crespi, Andre Baderscher, Andre Guignard
and Auke JanIjspeert, AmphiBotI: An amphibious snake
like robot,

 http://birg2.epfl.ch/brig_papers/ras_preprint2004.pdf
[10] Tamara Knutsen, Designing an underwater eel-like robot

and developing anquilliform Locomotion Control
Harvard University,
www.ee.upenn.edu/~sunfest/pastProjects/Papers00/Knut
senTamara.pdf

