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1. INTRODUCTION 

 
The mobile robots like snake robots are playing a critical 

role in many applications. Researchers have hopes of creating 
robots that can detect mines, explore Mars, or search for 
people trapped beneath an earthquake-damaged building. 
Serpentine mechanisms offer unique capabilities on earth to 
applications such as bridge inspection, search and rescue 
operations. Snakes motion capabilities different from many 
other animals. It can use its body as legs, arms or fingers [1, 2]. 
This unique feature of snakes offer snake robots as a useful 
tool in many real applications like inspection of broken 
buildings and pipes. It can also be used in places where human 
movement is restricted .The wave motion of snakes can push 
the obstacles and create its own way for further movement. 
Unlike many mechanical locomotives, movement of snake 
robots is not straight; it can turn to a side where there is a way 
to move further. The mechanical based snake robots are 
complex to design because of their many degrees of freedom 
[3, 4]. This requires complex and careful motion planning. 
Although the many of degrees of freedom of serpentine robots 
supply great functionality, they also supply a challenging 
research problem of how to coordinate all of the actuators in 
the robot to yield purposeful motion[5] .To implement this 
wave like motion of snakes, we have developed a snake robot 
prototype with LEGO Mindstrorm toolkit[6]. Our main 
approach here is to control and synchronize the snake 
movement effectively using concurrent programming model. 
Many microcontroller and mechanical based robots lacks the 
flexibility to control the snake movements. The main obstacle 
in such approaches is co-coordinating between individual units 
(Figure.1) of snake robot and flexibility in generating robot 
locomotion; also such methods are more expensive and time 
consuming.  
 

2. RELATED WORKS 
 

The snake robot is an active area of research in recent years. 
To generate flexible movements, some robots make use of 
rubber-joints. This is to bend in arbitrary directions and to 
make the snake robot’s body very flexible, as in GMD snake 
[3].There were many other robots developed over the years. In 
case of its locomotion, many of these robots lacks the features 
of program controlled concurrent model to generate wave-like 
motion. Some robots were designed to generate sine wave 
motion using microcontroller based programs [8]. Robots 
were developed to move on the surface of water or land, but 
use a system of coupled oscillators to generate wave like 

motion [9]. The commonly used locomotion control methods 
are trajectory based methods and heuristic methods. Many of 
such implementations use a simulation based methods to 
control the robot movement. 

 
3. DESIGN REQUIREMENTS 

 
Snakes move by pushing their body against environment. 

To achieve this, snake robot sections (Figure.1), must generate 
serpentine locomotion or lateral undulation. Lateral undulation 
is a sequence of left-right wave movements to accomplish real 
snake’s locomotion. Generating sine wave locomotion is the 
basic issue in designing snake robot. Also it is important to 
move the robot in left, right, circular, rectilinear, concertina, 
serpentine and side winding [10] based on robot user 
requirements. The second issue is about co-coordinating 
between two adjacent sections of the robot. This is important 
to generate the serpentine locomotion. The third issue is about 
robot performance in case of robot section or unit (Figure.1) 
failure. In case of any robot section or unit failure, the robot 
may break into pieces and may lead to great loss in case of 
critical applications. In such cases the robot must continue to 
operate along with its broken sections rather than total robot 
failure. Adding or removing a robot section or unit from the 
robot and retaining the same robot behavior are also our 
design consideration. The mechanical design of the robot is 
also equally important to support the above mentioned 
features. 

 
4. PROPOSED ROBOT ARCHITECTURE 

 
4.1 Hardware Configuration 

The physical prototyping of snake robot developed using 
LEGO toolkit as shown in figure 2. In the present model, we 
have used 4 motors as actuators and 4 angle sensors as sensors. 
The angle sensors are used to co-ordinate the sequence of sine 
wave movements in a particular direction and in a particular 
path along with motors, together form a unit in our robot. Each 
motors work as actuator to drive a unit of snake robot. Here a 
unit is a primitive individual element of robot.  Many units 
together make a section as shown in the figure 1. In general a 
snake may have N sections (1≤k≤N) and each section may 
have M units (1≤p≤M).  

The total number of units = N×M 
=Total number of motors needed.  
In the present design there are only two units (motors) per 

section. Altogether there are 4 units with one motor/unit. All 
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motors run at equal speed [3]. The mechanical structure of the 
robot is equally   important to realize the wave like motion 
of the robot. The selection of number of units in a particular 
section and number of sections in the robot depends on the 
robot designer’s choice. The present robot moves by pushing 
its body against the surface. The wheels connected to the each 
unit of the robot support this locomotion; this naturally makes 
the last unit (Nth) as head and first as tail. Although, in the 
present model all units acts independently, the head has no 
special function as in many robots, where the head defines the 
path. The figure 2 shows the photographic view of the robot. 

 

 
 

Fig. 1 Schematic diagram to explain robot sections and units. 
 

 
 

Fig. 2 LEGO snake robot 
 

 
 

Fig. 3 View of snake robot. 
  
A hardware interface is already developed in our lab to 
support many sensors and actuators of LEGO kit. This mainly 
includes touch sensors, light sensors, angle sensors, motors etc. 
The API (Application Programming Interface) which is 
developed in our lab supports many fundamental features to 
use these sensors and actuators in the present model. [7].A 
typical embedded computer system with LEGO sensors and 
actuator interfacing can be shown as shown in figure 4. The 
PC104 is an embedded computer standard and commonly used 
with LEGO systems. The PCI 104 is suitable for development 
of autonomous embedded robot control applications. 

 
Fig. 4 An embedded computer system with LEGO sensors and 

actuators. 
 
4.2 Software Architecture 
 The present model is implemented in RT-Linux based dual 
kernel environment as shown in figure 5. This architecture 
support both real time and non-real time tasks execution. The 
FIFO and shared memories are IPC (Inter-Process 
Communication) modules to support communication between 
real-time and non-real-time tasks. Also, GUI based user 
interface can be provided to control the robot movements.  
 

 
 

Fig. 5 RT-Linux Dual Kernel Architecture. 
 
To emulate the snake behavior, threads and semaphores are 
used. The program uses maximum N (1≤k≤N)   number of 
threads. The wave movement of the snake is realized by 
understanding the relationship between two adjacent sections, 
k and k+1 as shown in figure 1.Threads and semaphores were 
used to synchronize this relationship between two adjacent 
sections. In the present approach, N numbers of threads are 
required in a robot with N sections.  The pseudo code of the 
program is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 

main ( ){ 
 initialize_motors_sensors (); 
 initial__calibration (); 
 initialize_semaphores (); 
 thread_section_1 (); 
 …. 
 …. 
 thread_section_N(); 
 semaphore_destroy (); 
 end_ calibration(); 
} 
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The Figure.6 illustrates the robot unit movements in particular 
module of the program. This is the sequence of motor/unit 
movements when the entire code is executed at least once. In 
the initial calibration phase, the all motors turn in a particular 
direction with an angle value of Φ. As shown in the figure, 
when the motor 1 is running in right direction motor 2 is 
running in left direction and vice-versa. This is same for 
motors 3 and 4.  
 In the thread section phase, the motors run continuously 
with an angle of 2Φ inside the while loop and synchronization 
between the units of two threads is achieved using semaphores 
as shown in the above code. In this case, thread section 
modules executes continuously. A counter may be provided to 
run the motor for a particular period of time. The end 
calibration section is needed to bring back the robot to its 
original position. The major difference between calibration 
sections to the thread sections is the angle senor value. In case 
of calibration sections the robot  unit is turns left or right by 
an angle of Φ, where as in case thread section , by  2Φ. In 
this robot the for every angle sensor value (AS Value) of 5 the 
robot turns with 22.5 degrees. 

 
 

Fig. 6 Figure to understand the sequence of robot unit 
movements in different modules of the program. 

 
 In the above code, the SPEED is the speed of the motors in 
each unit of snake maintained at a constant level. The speed 
can be changed dynamically during the movement of the robot. 
The L(Left) and R(Right) indicate the direction of movements. 
The statement set_rotation_handler (angle_sensor(S (k+1, p)), 
ASValue); sets angle sensor of unit p of section k+1 with 
required angle Φ (with equivalent AS Value) to generate 
sine-wave. The statement run_motor(S (k+1, p), L, SPEED); 
turns the unit p in section k+1 of snake robot in left direction 
with speed value of SPEED. However it is important that mass 
is homogeneously distributed along the length of the snake 
robot and also the body retains symmetry among its contacts 
between two sections [8].  

 
5. EXPERIMENTAL EVALUATION 

 
5.1 Testing and Results 
 The present robot used wheels for its movement. And we 
have tested the movement of robot for sine- wave like motion. 
The robot is tested for to exhibit real snake behavior. The 
robot generated the different kinds of snake movements as 
shown in figure 7. The different movements (a, b, c, d) are 
generated with different angle sensor values.  The table.1 
illustrates various robot movements generated by setting 
different angle sensor values to different motors (M1 to M4) 
 

Table 1. Angle sensor values for different robot movements. 
 

  M1 M2 M3 M4 
AS Value(7.a) 3 3 3 3 
AS Value(7.b) 9 9 9 9 
AS Value(7.c) 12 9 6 3 
AS Value(7.d) 3 6 9 12 

   
 

 
 
Fig. 7 Different types of snake locomotion generated with 

different angle sensor values 
(a) Rectilinear (b) Serpentine (c) and (d) Concertina 

 
5.2 Advantages and Limitations  

The model proposed in this paper has numerous advantages 
as shown in table 2. The basic advantages are controllability, 
reusability, better performance, flexibility and cost 
effectiveness. As compared with mechanical or 
microprocessor based robots the proposed model is more 
flexible and controllable. The number of threads required is 
directly proportional to the number sections in the robot, leads 

//Thread for Section k+1 
start_section_k+1() { 
 while (1){ 
  sem_wait(&sem_k); 
  set_rotation_handler (angle_sensor(S (k+1, p)), 2*ASValue) 
  run_motor(S (k+1, p), R, SPEED); 
  set_rotation_handler (angle_sensor(S (k+1, p+1)), 2*ASvalue) 
  run_motor(S (k+1, p+1), L, SPEED);  
  sem_post(&sem_k+1); 
 } 
 thread_exit(NULL); 
} 

//Thread for Section_k 
 start_section_k () { 
 while (1) { 
  sem_wait(&sem_k+1); 
  set_rotation_handler (angle_sensor(S (k, p)), 2*ASValue) 
  run_motor(S (k, p), R, SPEED); 
  set_rotation_handler(angle_sensor(S (k, p+1)), 2*ASValue) 
  run_motor(S (k, p+1), L, SPEED);  
  sem_post(&semk); 
 } 
 thread_exit(NULL); 
} 
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to many threads and semaphores. This may cause some delay 
of execution between robot sections.  

 
Table 2. Advantages of the proposed model. 

 
Controllability The ‘S’, ‘O’ (Circular), rectilinear, 

serpentine and concertina shaped 
movements can be easily generated 
using the angle sensor. The angle sensor 
connected to the each robot unit 
enhanced the total controllability of the 
snake robot. The speed of the robot can 
be changed dynamically. Also, different 
sections can be operated with different 
speeds. 

Reusability The present model can be easily 
extended to N number of sections. Each 
section module act as a reusable 
component. 

Performance In case of physical damage/failure of any 
section, the robot continues to work 
without effecting the robot behavior or 
total robot failure. 

Flexibility Compared to mechanical or 
microprocessor based robots, the 
programming modeled robots are more 
flexible in terms of control, user 
understandability and real-time 
implementation. Also the necessary 
intelligence can be provided easily with 
program support. 

Cost The robot’s behavior can be easily 
modified using the present programming 
model without adding any additional 
physical components. 

   
 

6. CONCLUSION 
 
Many snake robots were already developed with defined 

head and tail. Usually head defines the path for its body. This 
method has some disadvantages. If the robot's head fails 
during its operation, then the rest of the body also stops 
operation. The present model overcomes these limitations. 
Each unit or sections can be designed to operate 
independently. We have implemented angle sensors and 
motors to realize the behavior of the snake. Our purpose is to 
create a model which can be used in many real-life   
applications and to realize multithreaded concurrent 
programming. The forces generated during its locomotion are 
of little importance and it is neglected here. In this paper we 
shown the design of a LEGO based snake robot and its 
programming implementation. The wave-like movement of 
snake is effectively generated by using programming 
constructs like semaphores and threads with effective use of 
angle sensors. Also, the present programming model can be 
applied to robots where complex concurrent locomotion is an 
absolute requirement. 
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