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Abstract: Though several previous anti-windup techniques have been proposed, they are limited to linear systems or friction

is not considered. Thus this paper proposes a compensation scheme for input-constrained robot systems with friction to cope

with the windup phenomenon and shows its effectiveness by simulations. Given a feedback linearizing controller for a robot

system designed without considering its input constraint, an additional dynamic compensator is proposed to account for the

constraint. The dynamic anti-windup is based on the minimization of a reasonable performance index, and properties of the

resulting closed-loop are presented.
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1. INTRODUCTION

Actuator saturation causes a nonlinear problem that needs to

be dealt with in almost all practical control systems. Feed-

back loops are broken when the actuators saturate. Per-

formance deterioration and even instability may result es-

pecially if the plants or controllers are unstable. A general

term for these phenomena is referred to as windup, and com-

pensation for preventing this windup is called anti-windup

[2]. Recently, a rigorous definition of the anti-windup is pre-

sented on the basis of an L2 criterion, and it is shown that

all static linear observer-based compensation schemes satisfy

the definition at least locally [10]. Generally, the following

strategy is adopted for anti-windup: design a controller ig-

noring the saturation, and then add an appropriate compen-

sator to account for the saturation. This is referred to as the

two-step design technique. However, anti-windup design at

the second phase is often carried out in an ad hoc manner. It

is therefore necessary to have a systematic anti-windup de-

sign method, which is based on optimization involving errors

between constrained and unconstrained outputs (i.e. with

and without saturation). In major anti-windup techniques,

there are observer-type technique [1], conditioning technique

[7], conventional anti-windup [5], unified framework by co-

prime factorization [12], finite gain technique [19], [10], and

optimization based methods [17], [16].

Recently in nonlinear control methods, feedback lineariza-

tion [9], [18], backstepping stabilization technique [13], and

sliding mode control [18] have attracted researchers’ atten-

tion. Among the control schemes for nonlinear systems, this

paper deals with a feeback linearizing control scheme for non-

linear robots. In anti-windup schemes for input-constrained

feeback linearizable sytems, there are a method using lin-

ear MPC (model predictive control) and constraint mapping

[14], one using internal model control and constraint map-

ping, [6], observer-type anti-windup [11], anti-windup unit-

ing local and global controllers for Euler-Lagrange systems

[15]. These schemes do not use an explicit performance in-

dex related to anti-windup.

Though several previous anti-windup techniques have been

proposed, they are limited to linear systems or a Coulomb

friction term is not considered in their nonlinear models. As

a robot system with the Coulomb friction term may cause a

larger windup problem compared with a system without it,

anti-windup compensation is more required. Thus this pa-

per proposes a compensation scheme for input-constrained

robot systems with friction to cope with the windup phe-

nomenon, which is extended from the results for constrained

linear systems in [17]. Given a feedback linearizing controller

for a robot system designed without considering its input

constraint, an additional dynamic compensator is proposed

to account for the constraint. To design a compensator, an

error model between the controller state variables of systems

with and without saturating actuators is derived. Then us-

ing the Parseval’s theorem and Laplace transform, an opti-

mal dynamic anti-windup solution to minimize a reasonable

performance index is derived. In the proposed method, the

controller state is maintained as in the unsaturated system.

Finally, properties and simulation results of the resulting

closed-loop are presented.

2. PROBLEM FORMULATION
Consider a nonlinear robot with a constrained input and a

friction term as follows:

MR(q)q̈ + CR(q, q̇)q̇ + GR(q) + d = sat(u)− FR(q, q̇) (1)

where (q, q̇) represents the state variables for the robot,

MR(q) is the generalized inertial matrix, CR(q, q̇)q̇ repre-

sents the generalized centrifugal and Coriolis terms, GR(q)

is the vector of gravitational forces, u is the vector of the

control inputs (typically consisting of forces and torques), d

is an unknown disturbance input, and sat(·) is the vector-

ized saturation function, and FR(q, q̇) = [F1, . . . , Fm]T are

the friction forces which can be represented by the LuGre



model [4] acting independently in each joint as

Fj = σ0j zj + σ1j żj + σ2j q̇j

żj = −αj(qj , q̇j)|q̇j |zj + q̇j
(2)

where j = 1, . . . , m, and zj denotes the average deflection

of bristles, which is not measurable, σ0j , σ1j , σ2j are friction

force parameters that can be physically explained as the stiff-

ness of bristles, damping coefficient, and viscous coefficient,

and the nonlinear characteristic function αj(qj , q̇j) is a finite

positive funciton whose one parametriztion to the Stribeck

effect is given by

αj(q̇j) =
σ0j

fcj + (fsj − fcj )e
−(q̇j/q̇sj

)2
(3)

where fcj is the Coulomb friction level, fsj is the level of

the stiction force and q̇sj is the constant Stribeck velocity.

The LuGre-model can describe all the dynamic effects of

friction such as the pre-sliding displacement, the frictional

lag, the Stribeck effect [20]. In this paper, for a steady-state

motion of the bristles the following simple measurable model

is considered as a starting point towards the model (2)

Fj(q̇j) = fcj sgn(q̇j) + σ2j q̇j (4)

which contains the Coulomb and viscous friction terms. The

dynamics (1) satisfies some important physical properties as

follows:

Property 1. MR(q) is a positive definite symemetric matrix

bounded by m1I ≤ MR(q) ≤ m2I, where m1, m2 are positive

constants.

Property 2. The unknown disturbance satisfies ‖d‖ ≤ dM ,

with dM is a positive constant. (‖ · ‖ is the Euclidean norm

of the corresponding vector.)

The robot dynamics (1) can be rewritten into a normal form

[9] as follows:

ψ̇ = Apψ + Bp(α− β −M−1
R d + M−1

R sat(u)) (5)

where

α = M−1
R (q)(−CR(q, q̇)q̇ −GR(q)− FR(q, q̇))

ψ =

26666664
q1 − q1d

q̇1 − q̇1d

...

qm − qmd

q̇m − q̇md

37777775 , β =

2664 q̈1d

...

q̈md

3775 (6)

Ap =

26666664
0 1

0 0

. . .

0 1

0 0

37777775 , Bp =

26666664
0

1

. . .

0

1

37777775 (7)

Fig. 1. Structure of the proposed anti-windup compensa-

tion.

where qjd, j = 1, . . . , m are desired trajectories for the out-

puts qj , respectively. Consider a feedback linearizing con-

troller with an anti-windup compensation term ξ as shown

in Fig. 1.

ẋc = Acxc + Bcψ − ξ (8)

u = MR(−α + β + Ccxc + Dcψ) (9)

where, Ac, Bc, Cc, Dc are matrices with appropriate dimen-

sions designed under the assumption without saturation, xc

are the state variables of the controller. The criterion to

design the anti-windup compensator with the structure is

to make the output of the constrained control system close

to the corresponding output of the control system without

saturation as possible.

In the robot controller, specially the gravitational and

Coulomb friction terms have an effect of narrowing the upper

and lower marginal ranges towards saturation limit which are

defined by

upper −marginj := ujmax −maxq{GRj (q)} − fcj ,

lower −marginj := |ujmin −minq{GRj (q)}+ fcj |
(10)

where j = 1, . . . , m, and ujmax , ujmin are the upper and

lower limits of the saturation components. Thus the satu-

ration may easily occur in the robot systems with Coulomb

friction. Furthermore, in the operational condition pressed

by a wall or a human arm as an external disturbance, the

margin decreases more and also saturation may occur for a

long time in the following over-range conditions:

dM + maxq{GRj (q)}+ fcj > ujmax ,

−dM + minq{GRj (q)} − fcj < ujmin

(11)

which are used in simulations of this paper. In such a case,

unstable control action such as integration results in large

error and system instability. By the way, to increase the

limit of robot actuators for escaping the saturation is not

desirable against the design of a light-weight robot. Thus,

to have a light robot and stable operation, anti-windup is

indispensable.

3. DERIVATION OF A DYNAMIC
ANTI-WINDUP COMPENSATOR

In [3], [7] and [17], when inputs saturate, the reason of perfor-

mance degradation is considered as the difference of the con-

troller state variables between the constrained system and



unconstrained system. This difference causes a distorted

control signal, which finally leads to the performance degra-

dation of the closed-loop system. For the reason, in this

paper a compensator is designed to minimize the following

explicit performance index:

J =

Z ∞

0

‖x̄c(t)− xc(t)‖2dt (12)

where x̄c and xc be the controller states in the absence of and

in the presence of saturating actuators, respectively, and the

symbol “ ¯ ” means that the corresponding variable operates

in the absence of satuating acuators. To derive an optimal

compensator, an error model between the controller states

of the constrained closed-loop with anti-windup and the un-

constrained closed-loop without input saturation is firstly

derived. To this end, the unconstrained closed-loop system

is derived from (5)-(9) as follows:

˙̄xc = Acx̄c + Bcψ̄ (13)

˙̄ψ = (Ap + BpDc)ψ̄ + BpCcx̄c −BpM−1
R (q̄)d (14)

And, the constrained closed-loop system is derived:

ẋc = Acxc + Bcψ − ξ (15)

ψ̇ = (Ap + BpDc)ψ + BpCcxc −M−1
R (q)(u− sat(u))

−BpM−1
R (q)d.

(16)

In the following theorem, we present an optimal solution to

minimize the performance index (12). For the solution and

stability analysis, the following assumptions are necessary.

Assumption 1. The matrix (Ap + BpDc) is Hurwitz.

Assumption 2. The matrix"
Ac Bc

BpCc Ap + BpDc

#
(17)

is Hurwitz.

Here Assumption 1 can be easily checked before designing a

compensator and is not a restricted condition as explained

in [8]. But, if the system does not satisfy Assumption 1, one

needs to adjust or redesign the controller. The matrix in

Assumption 2 is always designed to be stable for the stability

of the unconstrained closed-loop system (13), (14).

Theorem 1: Consider the nonlinear robot control system

(1), (5)-(9) safisfying Assumptions 1 and 2. If the inertia

matrix MR is contant or the disturbance d is free, the dy-

namical compensator that makes the performance index (12)

be zero is determined by

ẋaw = (Ap + BpDc)xaw + BpM−1
R (q)(u− sat(u))

ξ = −Bcxaw.
(18)

Proof. By the Parseval’s theorem, the performance index

in (12) can be rewritten as:

J =
1

2πj

Z j∞

−j∞
‖b̄xc(s)− bxc(s)‖2ds (19)

where “b” denotes the Laplace transform of corresponding

variables. And, from the Laplace tranform of (13)-(16), we

obtainb̄xc(s)− bxc(s) =

Θ−1
1 (s){[x̄c(0)− xc(0)]

+ BcΘ
−1
2 (s)[ψ̄(0)− ψ(0)]

+ {bξ + BcΘ
−1
2 (s)Bp

bξ0}
+ BcΘ

−1
2 (s)(−Bp)[ \M−1

R (q̄)d(s)− \M−1
R (q)d(s)]}

(20)

where

Θ1(s) = {(sI −Ac)−Bc[sI − (Ap + BpDc)]
−1BpCc} (21)

Θ2(s) = [sI − (Ap + BpDc)] (22)

ξ0 := M−1
R (u− sat(u)) (23)

and the initial values can be set as the following conditions:

xaw(0) = 0, xc(0) = x̄c(0), ψ(0) = ψ̄(0). (24)

And, if the inertia matrix is contant or the disturbance is

free, [M−1
R (q̄)d−M−1

R (q)d] becomes zero. In the error model

(20), Θ2(s) is nonsingular ∀Re[s] ≥ 0 from Assumption 1.

The nonsingularity of Θ1(s) can be proved from the non-

singularity of Θ2(s) and Assumption 2 as in [17] which is a

linear version of this paper. Finally, the Laplace transfrom

of the compensation term that makes the performance index

(12) be zero is obtained asbξ = −BcΘ
−1
2 (s)Bp

bξ0

= −Bc[sI − (Ap + BpDc)]
−1Bp

bξ0

(25)

and the compensator is determined to (18). 2

Remark 1. If the inertia matrix MR is not contant and the

disturbance d is not free, the error equation (20) in case with

the compensator (18) becomesb̄xc(s)− bxc(s) = Θ−1
1 (s)BcΘ

−1
2 (s)(−Bp)

×[ \M−1
R (q̄)d(s)− \M−1

R (q)d(s)].
(26)

And the error x̄c − xc is bounded from Properties 1, 2, and

the stability of Θ−1
1 (s) and Θ−1

2 (s) in the proof of Theorem

1.

Remark 2. The solution can be obtained regarless of the ex-

istence condition (14) in [15] which may be broken for robot

systems with Coulomb friction and a disturbance resulting

in control with large magnitude.

4. AN INTERPRETATION OF THE
COMPENSATOR AND STABILITY OF

THE RESULTING SYSTEM
First, this section addresses an interpretation of the derived

anti-windup state equation (18) as an observer. Deriving

a state equation of (ψ̄ − ψ) from (14) and (16) gives the

following

˙̄ψ − ψ̇ = (Ap + BpDc)(ψ̄ − ψ) + BcCc(x̄c − xc)

+BpM−1
R (q)[u− sat(u)]−Bp[M−1

R (q̄)−M−1
R (q)]d

(27)



While the compensator to a robot with a constant iner-

tia matrix is applied or the disturbance is zero, (M−1
R (q̄) −

M−1
R (q))d is a zero matrix and then x̄c is equal to xc from

Theorem 1. Then the state equation (27) can be rewritten

as

˙̄ψ − ψ̇ = (Ap + BpDc)(ψ̄ − ψ) + BpM−1
R (u− sat(u)) (28)

This equation has the same form of the state equation of the

compensator (18) which can be interpreted as an observer

of (ψ̄ − ψ). After all, the compensator plays a role of filling

the insufficient updating quantity of ψ due to the saturation

into the state equation (8) of the controller as the following

ẋc = Acxc + Bcψ + Bcxaw = Acxc + Bcψ + Bc
^(ψ̄ − ψ)

' Acxc + Bcψ̄

(29)

where, “e” means the result observed by an observer of the

corresponding signal.

If a nonlinear system is unstable, any controller cannot glob-

ally stabilize the constrained system. Thus in the following

theorem the stability of the resultant system is analyzed on

the assumption of BIBS (bounded-input-bounded-state) of

the nonlinear robot plant. This stability is not an asymp-

totic property but a global property. In case of robot sys-

tems, velocity or force control systems can be assumed to be

BIBS.

Theorem 2: Suppose that Assumptions 1 and 2 are satis-

fied. Then if the system (1) is bounded-input-bouded-state

to the saturation input, the closed-loop system of (1), (5)-

(9), and (18) satisfies the following properties:

‖xc(t)‖ < ∞, ‖xaw(t)‖ < ∞, ∀t. (30)

Proof. In (26), the disturbance injection M−1
R d is bounded

by Properties 1 and 2. And since Assumptions 1 and 2 ensure

that Θ−1
1 (s) and Θ−1

2 (s) are stable as in the proof of Theorem

1, xc is boudend. Adding (16) and (18), we obtain:

d

dt
(ψ+xaw) = (Ap+BpDc)(ψ+xaw)+BCcxc−BpM−1

R (q)d.

(31)

Since (Ap +BpDc) is Hurwitz from Assumption 1, (ψ+xaw)

is bounded, which results in the boundedness of xaw from

the BIBS assumption of the system that ψ is bounded. 2

5. SIMULATION RESULTS

In this section we show the necessity of an anti-windup

scheme and the usefulness of our proposed anti-windup

scheme through simulations under the condition (11).

5.1. Anti-windup results for position control

Consider a one-degree-of-freedom robot [21] consisting of a

linear (not rotational) actuator with a constrained input and

a nonlinear Coulomb friction term as follows:

MRq̈ + fdist = sat(u)− fcsgn(q̇)− σ2q̇ (32)

where the mass MR of the movable part is 6.67 Kg, the

viscous damping coefficient σ2 of the linear slider part is

48.54 Ns/m, u is the control force by the linear actuator

with umin = −100 N and umax = 100 N being the lower and

upper limits of the saturation, q is the position, the Coulomb

friction coefficient fc is 25 N, fdist is a force disturbance. A

nonlinear position controller with the proposed compensa-

tion term is applied to the robot as the following:

ẋc = 0xc + (q − qd)− ξ (33)

u = −σ2q̇ + MRq̈d + fcsgn(q̇)

−KIxc −KP (q − qd)−KD(q̇ − q̇d)
(34)

and the PID-type dynamic controller is given with KP =

1000, KD = 500, KI = 4000. Then

Ac = 0, Bc =
h
1 0

i
,

Cc = −M−1
R KI , Dc =

h
−M−1

R KP −M−1
R KD

i
.

(35)

Thus (Ap + BpDc) is Hurwitz. Now we apply the proposed

dynamic compensation method to improve the performance.

The parameters are calculated as:

Aaw =

"
0 1

−150 −75

#
, Baw =

"
0

1

#
,

Caw =
h
−1 0

i
, Daw = 0, Kaw = 0.15.

(36)

Here the desired trajectory qd is given by:

bqd(s) =
130

s2 + 11.4s + 130
br(s) (37)

where r(t) is 0.1 m. And the disturbance is 98 N if 1 ≤ t < 4

and otherwise 0, which can be interpreted as the situation

pushed by a human arm. In case without compensation as

shown in Fig. 2, the state of controller increases proportion-

ally to the time during the saturation and the output has a

big overshoot after 4 s from the reference (the dotted line),

which implies the neccessity of anti-windup compensation in

the condition (11). On the other hand in case with the pro-

posed compensator the small overshoot in the output after 4

s with small maginitude of the controller state is achieved as

shown in Fig. 3, which shows the usefulness of the proposed

anti-windup compensator.

5.2. Anti-windup results for force control

Consider a robot with a constrained input contacting a com-

pliant wall as follows:

MRq̈ + fdist = sat(u)− fcsgn(q̇)− σ2q̇ − fe (38)

where fe is a force reflected by a compliant wall, fe = keq,

the stiffness ke of the wall is 1000 N/m, MR = 6.67 Kg, fc =

25 N, σ2 = 48.54 Ns/m, umin = −100 N, and umax = 100

N. The robot model can be rewritten as

MRk−1
e f̈e + fdist = sat(u)− fcsgn(k−1

e ḟe)− σ2k
−1
e ḟe − fe.

(39)



Fig. 2. Position control results without compensation.

Fig. 3. Position control results with the proposed compen-

sation.

A nonlinear force controller with the proposed anti-windup

compensation term is applied to the robot plant as follows:

ẋc = 0xc + (fe − fd)− ξ (40)

u = fcsgn(k−1
e ḟe) + σ2k

−1
e ḟe + fe + MRk−1

e f̈d

−KP (fe − fd)−KIxc −KD(ḟe − ḟd)
(41)

and the PID-type dynamic controller is given with KP =

10, KD = 5, KI = 10. Then

Ac = 0, Bc =
h
1 0

i
,

Cc = −M−1
R keKI , Dc =

h
−M−1

R keKP −M−1
R keKD

i
.

(42)

Thus the parameters of the proposed compensator are cal-

culated as:

Aaw =

"
0 1

−1500 −750

#
, Baw =

"
0

1

#
,

Caw =
h
−1 0

i
, Daw = 0, Kaw = 150.

(43)

Here the desired force fd is given by:bfd(s) =
130

s2 + 11.4s + 130
br(s) (44)

Fig. 4. Force control results without compensation.

Fig. 5. Force control results with the proposed compensa-

tion.

where r(t) is 50 N (the half of the limit). And the disturbance

is 98 N if 1 ≤ t < 6 and otherwise 0, which comes from

the condition (11). In case without compensation as shown

in Fig. 4, the state of controller increases proportionally to

the time during the saturation and the output has a big

overshoot after 6 s from the reference (the dotted line). On

the other hand in case with the proposed compensator the

small overshoot in the output after 6 s is achieved with small

maginitude of the controller state as shown in Fig. 5, which

shows the usefulness of the anti-windup scheme in the force

control of the robot.

6. CONCLUSIONS
This paper proposes a new optimal dynamic anti-windup

scheme for input-constrained nonlinear robot systems with

friction. We first derive an error model between controller

dynamics of the constrained closed-loop with anti-windup

and the unconstrained closed-loop without input saturation.

Then using the Parseval’s theorem and Laplace transform,

an optimal solution to minimize a performance index is de-

rived. In the proposed method, the controller state is main-



tained as in the unsaturated system. An interpretation of

the compensator as an observer and stability of the resulting

closed-loop systems are also given and the usefulness of the

proposed design method is illustrated by position and force

control simulations in some over-range conditions related to

disturbance, gravity, and Coulomb friction. The effects of

model uncertainties need to be examined in the future.
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