
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

An Adaptive Universal Serial Bus (USB) Protocol for Improving the
Performance of Data Communication under the Heavy Traffic

Yoon-Gu Kim*, Ki-Dong Lee**

* School of Electrical Eng. & Computer Science, Yeungnam Univ., Kyungsan, Kyungbuk, Korea
(Tel : +82-53-810-3910; E-mail: ryankim8@yumail.ac.kr)

** School of Electrical Eng. & Computer Science, Yeungnam Univ., Kyungsan, Kyungbuk, Korea
(Tel : +82-53-810-3910; E-mail: kdrhee@yu.ac.kr)

Abstract: Universal Serial Bus (USB) is one of the most popular communication interfaces. When USB is used in more extended
range, especially configuring home network by connecting multiple digital devices each other, USB interface uses the bandwidth in
the way of Time Division Multiplexing (TDM) so that the bottleneck of bus bandwidth can be brought under the heavy traffic. In
this paper, the more effective usage of bus bandwidth to overcome this situation is introduced. Basically, in order to realize the
system for transferring real-time moving picture data among digital information devices, we analyze USB transfer types and
descriptors and introduce the method to enhance the detailed performance of isochronous transfer that is one of USB transfer types.

Keywords: USB, Isochronous, Bus Bandwidth, Heavy Traffic

1. INTRODUCTION 2. BACKGROUND

Universal Serial Bus (USB) is one of the most important
developments in PC peripheral interconnect technology. It
prevails that USB is adopted in new digital devices and
equipments. The benefits of USB, such as ease of use, true
plug and play, high performance, reduced system cost, and so
on, make no doubt of the choice of USB for communication
interface [1].

USB System is composed of main four blocks that are
client software/USB driver (USBD), Host Controller Driver
(HCD), Host Controller (HC), USB device and works by
interfacing each other. HCD and HC are working for data
transfer between client software and USB devices [1-4]. Client
software generates and receives function-specific data to/from
a function endpoint of USB device via calls and callbacks
requesting I/O Request Packets (IRPs) with the USBD
interface. USBD converts data in client IRPs to/from device
endpoint via calls and callbacks with the appropriate HCD.
HCD converts IRPs to/from transactions and organizes them
for manipulation by the HC. HC takes transactions and
generates bus activity via packets to move function-specific
data across the bus for each transaction. The procedure of
USB information conversion from client software to bus is
shown in Fig. 1.

While USB is fast widening the range of its usage, When
USB is utilized in more extended range, especially configuring
home network by connecting multiple digital devices each
other within a home, USB interface uses the bandwidth in the
way of Time Division Multiplexing (TDM) so that the
bottleneck of bus bandwidth can be brought under the heavy
traffic [7]. In this paper, the more effective usage of bus
bandwidth to overcome this situation is introduced. Basically,
in order to realize the system for transferring real-time moving
picture data among digital information appliances, we analyze
USB transfer types and descriptors, data structures with the
defined format for configuration information exchange
between a host and a device, and introduce the method to
enhance the detailed performance of isochronous transfer that
is one of USB transfer types.

In the case that a configuration descriptor of a USB device
has an interface descriptor that has two alternate settings, if the
isochronous transfers between host and devices are not
processed smoothly due to excessive bus traffic, the
application software of the device requires a new
configuration through Set_Interface request that is one of the
predefined requests in the USB specification and changes the
other one of both alternate settings in the interface descriptor.
As the result of this adaptive configuration, the least data
frame rate for the real-time moving pictures is guaranteed to a
device that the sufficient bandwidth is not allotted
continuously in the heavy traffic situation. And if the bus
traffic becomes normal, the algorithm for returning to the
original alternate setting is also introduced. This introduced
method resolves the bottleneck of moving picture transfer that
can be occurred in home network interconnected by multiple
digital devices [5].

Fig. 1 USB information conversion from client s/w to bus

2 .1 USB Transfer Types

There are four USB transfer types; Control, Isochronous,

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Interrupt, Bulk. Each transfer type is possible to configure
optionally according to the service requirement and condition
between client software and USB device. Each transfer type
has its own transfer features.

Control transfer is bi-directional and support configuration,
command or status communications between the host and the
function of device. A control transfer consists of 2 or 3 stages,
a setup stage, data stage and status stage. A data stage may or
may not exist according to request command type. In the setup
stage, the host sends a request to a function of device. In the
data stage, data transfer occurs in the direction as indicated in
the setup stage (IN: device to host, OUT: host to device). And
in the status stage, the function returns a handshake to the
host.

Isochronous transfer is uni-directional and transmits data
periodically with a. But isochronous transfer is not sensitive to
delivery failure due to errors so that no retry is required. The
maximum transfer available using isochronous transfer is
8.814Mbps and the maximum packet size for isochronous
transfer 1023 bytes per frame of 1ms.

Interrupt transfer is also uni-directional and only inputs to
the host. For full speed devices, the endpoint can specify the
polling period from 1ms to 255ms. It is used to support data
transfers that are small in transmission size and high in
transmission frequency.

Bulk transfer is used to support the case that
communicating large amounts of data accurately is more
important and the time of delivery is not critical. Whenever
the unused bandwidth of bus is available, the transfer is
possible without periodicity. In the case of delivery failure due
to errors, the transfer is retried.

2 .2 Descriptor Types

Descriptors are data structures, or formatted blocks of
information, that enable the host to learn about a device. All
USB peripherals must respond to the host’s requests for the
USB descriptors. There are device, configuration, interface,
endpoint and string descriptor in the type of standard
descriptors and they have each level from higher to lower in
sequence. The higher-level descriptors inform the host of the
information of any additional, lower-level descriptors and can
have one or more lower-level descriptors according to the
supporting features [2].

First of all, the device descriptor is the first information the
host reads on device attachment. It has basic information
about the device and especially has a unique Vendor ID and a
Product ID that identify the device among many devices.

The configuration descriptor describes the device's features
and abilities. It contains information about the device's use of
power and the number of interfaces supported. When the host
requires a configuration descriptor (Get_Desriptor), the device
returns information of all subordinate descriptors that the
configuration descriptor has, including one or more interface
descriptors and optional endpoint descriptors.

The interface descriptor describes information about a
specific interface that means a set of endpoints used by a
device feature or function in a configuration. After the device
is configured by a configuration descriptor, the interface
descriptor has a field for an alternate setting, or
bAlternateSetting, in order to change the endpoints and their
properties according to the status of device. This paper utilizes
these features of USB configuration.

The endpoint descriptor is specified for an interface and
describes information about address, transfer type and
bandwidth of each endpoint.

The string descriptor is optional and contains descriptive

text information to string reference pointer in each descriptor
[6].

3. PROPOSED MODEL AND PERFORMANCE
ANALYSIS

Here we propose and simulate a USB bandwidth usage

model for the enhancement of transfer performance and
analyze and evaluate the result of simulation.

3 .1 Proposed Model

Basically, as shown in the Fig. 2, we assume that the device
descriptor of a USB device has two configuration descriptors
and one of the two ones, Configuratioin0, has two interface
descriptors. Then let's set that the first interface descriptor has
two alternate settings that define the different features of
endpoints, such as transfer type, maximum transfer packet size,
and interval. According which bAlternateSetting, a field of the
interface descriptor, is selected, the interface feature for the
device function is changed and worked with a new interface
setting. The host reads the alternate setting of current interface
with Get_Interface request and requests an alternate interface
through Set_Interface request at the time to require the change
of the alternate setting for the more suitable USB bandwidth
usage under the heavy traffic. In order to explain these
situations in detail, we configure two alternate settings of
endpoints for the bAlternateSetting of interface descriptor as
shown in Table 1 and Table 2.

Fig. 2 Alternate settings for interface descriptor

In the case of bAlternateSetting = 0, Table 1 lists the important
fields of endpoints setting.

Table 1 Endpoints Setting of bAlternateSetting = 0
Endpt No Field Value Note

bmAttributes 01 IsochronousEndpoint 1 wMaxPacketSize 1023 Byte
bmAttributes 11 InterruptEndpoint 2 wMaxPacketSize 64 Byte

In the case of bAlternateSetting = 1, Table 2 lists the important
fields of endpoints setting.

Table 2 Endpoints Setting of bAlternateSetting = 1
Endpt No Field Value Note

bmAttributes 01 IsochronousEndpoint 1 wMaxPacketSize 512 Byte
bmAttributes 11 InterruptEndpoint 2 wMaxPacketSize 64 Byte

In the situation that multiple devices are interconnected and
communicate with the host, each device utilizes a part of total

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

bandwidth allotted from the host in the way of TDM. At this
time, a specific device that has a configuration based on the
above configuration and each descriptor's description
information is attached to the host additionally. When
sufficient bandwidth is not allotted to the device and transfer
requests of the device are delayed continuously, the client
software retains the transfer delay count (nDelayCount) and
checks whether the count exceeds a threshold count
(nThresholdCount). If so, the client software of the device
requests changing a bAlternateSetting of the interface
descriptor. By the request, the host sends Set_Interface request
for change of bAlternateSetting value in the interface
descriptor and the device acknowledges the request. As the
result, the isochronous transfer request between the host and
device transmits by a new wMaxPackitSize in the
bAlternateSetting 1 that is a half of wMaxPacketSize in the
bAlternateSetting 0. This procedure enables more adaptive
and effective usage of bandwidth according to the current
usage status of USB bandwidth to the device that is not
allotted the transfer bandwidth for a specific transfer delay
count among devices competing to secure the available
bandwidth.

Fig. 4 Return to the normal setting

3 .2 Performance Analysis

Figure 5 shows the execution screen of simulation for the
adaptive model proposed in section 3.1. This simulation was
programmed to simulate 3 types of situations. The first one is
a case that the total of each transfer packet size exceeds the
maximum USB bandwidth, Total Size > 1500bytes/ms (12
Mbps), and each device becomes to compete for the USB
bandwidth to secure bus time for its transfer. The second one
is a case that the total packet size is same or less than the
maximum bandwidth, Total Size <= 1500bytes/ms (12 Mbps),
and the needed bandwidth for all transfer requests can be
allotted in a frame. The third one is a case to exceed the
maximum bandwidth similarly with the first one. But the
difference is that the third case applies the proposed model to
this simulation and was programmed to simulate an adaptive
situation that a device can vary the maximum packet size
(wMaxPacketSize) adapting itself to the current bandwidth
status.

The procedure to change an alternate setting for the
interface descriptor is shown in Fig. 3. A device obtained the
priority in the bandwidth competition is first allotted the
bandwidth for the specified transfer and the rest of bandwidth
is allotted to the other device that requests its transfer
bandwidth. If the rest of USB bandwidth is less than the
bandwidth that the other device requests, the communication
of a frame is completed without using the rest of USB
bandwidth. That results in the extravagance of USB bandwidth
and reduction of total data transmission quantity and rate.
Therefore, this paper introduced a model to enhance
transmission performance of USB that each interface
descriptor has additional configuration information to adapt to
the rest of bandwidth according to the current status of USB
bandwidth and transfer requests of the device retry in the
changed configuration in case of continuous transfer delays.

Fig. 5 Execution screen for simulation

 The simulation made 10 times of experiment for each
situation with SOF (Start Of Frame) per 1ms and 960 counts
of IRPs in a network environment that 3 types of devices are
interconnected to the host. The performance analysis based on
the simulation result is shown in Fig. 6 and Fig. 7. As shown
in Fig. 6, the third case of simulation that enables an adaptive
usage of bandwidth depending on the current status can
receive 33%(954.3:1267.8 = 1:1.328) more in the data
reception quantity than the first case that competes for the
bandwidth security. These results can be more or less
differential according to the setting of data packet size for the
simulation but the adaptive bandwidth usage shows more data
reception quantity on the average than the competitive one.

Fig. 3 Procedure to change an alternate setting of Interface
Descriptor

Figure 4 shows a procedure to return to the normal setting

in the case that USB bus bandwidth becomes sufficient for the
transfer. In order to return to the normal setting, client
software requests a IRP that has two transactions of
wMaxPacketSize supported in the changed configuration and
checks whether the two transactions is completed without any
transmission delay. If the response to IRP is case A of Fig. 3,
client software keeps the changed configuration. If it is case B,
client software requests to return to the original configuration.
These procedures showed more enhanced performance in total
data reception quantity and rate in the simulation result of this
paper.

Figure 7 shows data packet reception rate of each situation.
This illustrates that the competitive situation cannot transfer

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

data packets in case of the failure to secure sufficient
bandwidth, while the adaptive situation tries to transfer data
packets adapting to the current bandwidth status in order to
make the best of the maximum USB bandwidth. The mean
data reception rate of more than 95% means that a device can
have more chances to receive data packets consecutively but
with the adapted packet size so that can reduce or resolve
some delay phenomenon of the real-time moving picture's
reproduction and enhance the quality of reproduction.

 For the more suitable enhancement of transfer performance,
it is needed to develop an algorithm to determine the optimum
threshold value of transmission delay count
(nThresholdCount) and to be applied to the proposed model.

 Fig. 6 Comparison of data packet reception quantity

REFERENCES

Fig. 7 Comparison of data packet reception rate
 [1] Wooi Ming Tan, “Developing USB PC Peripherals

Second Edition Using the Intel 8x930Ax USB
Microcontroller”, Annabooks, 1999.

4. CONCLUSION

In this paper, we proposed a model for more efficient usage

of USB communication bandwidth under the heavy traffic.
The simulation result of the proposed model showed that the
adaptive situation for the bandwidth results in more enhanced
data reception quantity and rate in the real communication
than the competitive situation. USB is widely used as one of
the most popular and easy communication interfaces and
estimated that the range of usage will be more and more
extended and applied in various types. Especially, in the case
of the moving picture transmission of multiple interfaces or
the multimedia environment, when USB is adopted as the
communication interface, the efficient usage of limited USB
bandwidth will be the most important issue. Therefore, if the
model proposed in this paper is applied to these situations, we
can anticipate the enhancement of interface performance
among devices.

[2] Jan Axelson, “USB Complete Everything You Need to
Develop Custom USB Peripherals” Second Edition,
Lakeview Research, 2001.

[3] John Hyde, “USB Design by Example A Practical Guide
to Building I/O Devices”, Intel Press, 2001.

[4] Compaq, Intel, Microsoft, NEC, “Universal Serial Bus
Specification Revision 1.1”, 1998.

[5] Se-Il Jun, Doo-Bok Lee, “Development of Data Transfer
Program Using USB Interface”,Korea Information
Processing Society, Vol.7, No.5, pp. 1553-1558, 2000.

[6] Kim Hyung Hun, “USB GUIDE Universal Serial Bus”,
Ohm, 2002.

[7] Chiewon Lee, Jongwook Jang, E.K. Park, Sam Makki,
“An Analysis of the Performance of TCP over IEEE
1394 Home Networks”, IEEE, 1999.

