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Abstract: The main objective of the research work presented in this article is to present a systematic approach for designing a 
multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an 
approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is 
studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent 
reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one 
hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of ST-
ANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that 
the performance of ST-ANNPSS is quite robust to a wide variation in loading condition. 
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1. INTRODUCTION 
Power system stabilizers (PSS) have been extensively used 

in large power systems for enhancing stability of the system. 
The conventional fixed structure PSS, designed using a linear 
model obtained by linearizing nonlinear model around a 
nominal operating point provides optimum performance for 
the nominal operating condition and system parameters. 
However, the performance becomes suboptimal following 
deviations in system parameters and loading condition from 
their nominal values.  

In recent years, self-tuning PSSs, variable structure PSSs, 
fuzzy logic PSSs and artificial neural network (ANN) based 
PSSs [1–5] have been proposed to provide optimum damping 
to the system oscillations over a wide range of system 
parameters and loading conditions. Two reasons are put 
forward for using ANN. First, since an ANN is based on 
parallel processing, it can provide extremely fast processing 
facility. The second reason for the high level of interest is the 
ability of ANN to realize complicated nonlinear mapping from 
the input space to the output space.  

The ANN based PSS proposed in the literature may be 
classified into the following two categories.  

 
(a) In the first category of the ANN based PSS, the ANN is 

used for real-time tuning of the parameters of the 
conventional PSS (e.g. proportional and integral gain 
settings of the PSS [1]). The input vector to the ANN 
represents the current operating condition, while the 
output vector comprises the optimum parameters of the 
conventional PSS.  

The ANN-tuned PSS can be regarded as a kind of selftuning 
PSSs. The main advantage of ANN-tuned PSS over a self-
tuning PSSs is that the ANN-tuned PSS does not require 
system identification, while the conventional self-tuning PSS 
does.  
(b) In the second category of the ANN based PSS, the ANN is 

designed to emulate the function of the PSS and directly 
computes the optimum stabilizing signal [2–5].  

 
It may be noted that the number of training patterns 

required in the second category is very large, as compared to 
that in the first category [1,3]. Moreover, the generation of 
training patterns in the first category is very straightforward as 
compared to those in the second category.  

The literature survey shows that in most of the past research 

work pertaining to ANN based PSS, the number of neurons in 
the hidden layer have been chosen arbitrarily. The main thrust 
of the research work presented in this paper is to address to 
some of the important issues pertaining to the design and 
performance evaluation of ANN based PSS, e.g. selection of 
elements of input vector of the training patterns, number of 
training patterns, selection of number of neurons in the hidden 
layer, and performance of the system with ST-ANNPSS under 
wide variations in loading and line reactance eX . 

The main objectives of the research work presented in this 
article are: 

 
1. To present a systematic approach for designing a multilayer 

feedforward artificial neural network based self-tuning PSS 
(ST-ANNPSS).  

2. To suggest an approach for selecting the number of 
neurons in the hidden layer.  

3. To study the dynamic performance of the system with ST-
ANNPSS and hence to compare with that of conventional 
PSS. 

4. To investigate the effect of variation of loading condition 
and equivalent reactance, eX  on dynamic performance of 
the system with ST-ANNPSS.  

 
2. SYSTEM INVESTIGATED 

A single machine-infinite bus (SMIB) system is considered 
for the present investigations. A machine connected to a large 
system through a transmission line may be reduced to a SMIB 
system, by using Thevenin’s equivalent of the transmission 
network external to the machine. Because of the relative size 
of the system to which the machine is supplying power, the 
dynamics associated with machine will cause virtually no 
change in the voltage and frequency of the Thevenin’s voltage 
EB (infinite bus voltage). The Thevenin equivalent impedance 
shall henceforth be referred to as equivalent impedance (i.e. 

ee jXR + ). The nominal parameters and the nominal operating 
condition of the system are given in the Appendix. IEEE type 
ST1A model of static excitation system has been considered. 
Conventional PSS comprising cascade connected lead 
networks with generator angular speed deviation ( ω∆ ) as 
input signal has been considered. Fig. 1 shows the small 
perturbation transfer function block diagram of the SMIB 
system relating the pertinent variables of electrical torque, 
speed, angle, terminal voltage, field voltage and flux linkages. 
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This linear model has been developed, by linearizing the 
nonlinear differential equations around a nominal operating 
point [6].  
 

 
Fig. 1 Small perturbation transfer function block diagram of a  

single machine-infinite bus system with conventional PSS. 
 

3. TRANSFER FUNCTION MODEL OF THE 
POWER SYSTEM STABILIZER AND THE 

DESIGN CONSIDERATIONS 
 

Fig. 2 represents a transfer function block diagram of the 
system, through which an electrical torque is produced in 
response to speed deviation signal, D v; where as GEP(s) is a 
transfer function of the system whose output is electrical 
torque and input is stabilizing signal. In order to increase 
damping of the rotor oscillations, a PSS utilizing shaft speed 
deviation as input signal must compensate for the phase-lag of 
GEP(s) to produce a component of the torque in phase with 
speed deviation [8]. The transfer function of a PSS is 
represented as: 

 
(1) 

where STABK  is stabilizer gain, FILT(s) is combined transfer 
function of torsional filter and input signal transducer, WT  is 
washout time constant and 1T ; 2T ; 3T ; 4T  are time constants 
of the lead–lag networks.  

An optimum stabilizer is obtained by a suitable selection of 
time constants WT ; 1T ; 2T ; 3T ; 4T  and stabilizer gain STABK : 
Two identical lead-lag networks can be chosen for a 
conventional PSS (i.e. 1T = 3T  and 2T = 4T ). This choice 
reduces the number of parameters to be optimized. The filter is 
used for attenuating the stabilizer gains at turbinegenerator 
shaft torsional frequencies and may be neglected while 
designing PSS. The design considerations and the procedure 
for selecting the PSS parameters are as follows.  
 
3.1 Phase lead compensation 

To damp rotor oscillations, the PSS must produce a 
component of electrical torque in phase with the rotor speed 
deviation. This requires phase-lead circuits to compensate the 
phase-lag between exciter input (i.e. PSS output) and the 
resulting electrical torque. The phase characteristic of the 
system (i.e. GEP(s)) depends on the system parameters and the 
operating condition. The required phase-lead for a given 
operating condition and system parameters can be achieved by 
selecting the appropriate value of time constants 1T - 4T :  
 
3.2 Stabilizing signal washout 

The signal washout is a high-pass filter that prevents steady 
changes in the speed from modifying the field voltage. The 

value of the washout time constant WT  should be high enough 
to allow signals associated with oscillations in rotor speed to 
pass unchanged. From the viewpoint of the washout function, 
the value of WT  is not critical and may be in the range of 1–
20s. For local mode oscillations in the range of 0.8–2.0 Hz, a 
washout time constant of about 1.5 s is satisfactory. From the 
viewpoint of low-frequency inter-area oscillations, a washout 
time constant of 10 s or higher is desirable. 
 
3.3 Stabilizer gain 

Ideally, the stabilizer gain should be set at a value 
corresponding to optimum damping. However, this is often 
limited by other considerations. It is set to a value, which 
results in satisfactory damping of the critical modes without 
compromising the stability of the other modes, and which does 
not cause excessive amplification of stabilizer input signal 
noise. 
 

4. CASE STUDY 
 
Fig. 3 depicts the schematic diagram of a synchronous 
generator with ST-ANNPSS. The ANN is used for tuning the 
parameters of the PSS in real-time. For a SMIB system, the 
generator terminal complex power ( jQP + ); generator 
terminal voltage ( tV ); equivalent reactance eX  and infinite 
bus voltage BE  are related as 

 
(2) 

Let us consider BE  as a reference phasor, and 

tqtdt jVVV +=  From Eq. (2), we get 

 

(3) 

 

(4) 

 
 

 
Fig. 2. Transfer function of the system relating electrical 

component of the torque ( eT∆ ) produced by voltage regulator 
action in response to ω∆ . 

 
The Eqs. (3) and (4) are independent equations in terms of 

BE ; tV ; P ; Q ; tdV  and eX : Assuming BE =1:0 p.u., we are 
left ith five variables and two equations. If three of these five 
variables are assumed then other two can be determined. Thus, 
the operating condition is characterized by three variables out 
of the five. Since P ; Q  and tV  are measurable at the 
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terminals of the generator, these are chosen as the coordinates 
of the input space. Thus the nodes in the input layer of ANN 
receive generator real power output ( P ); generator reactive 
power output ( Q ); and generator terminal voltage ( tV ). In the 
present investigations, two identical leadlag networks are 
chosen for the conventional PSS (i.e. 1T = 3T  and 2T = 4T ), 
hence the parameters of the PSS to be tuned in real-time are 

STABK ; 1T  and 2T : Thus the nodes in the output layer provide 
the desired PSS parameters STABK ; 1T  and 2T . 
 
4.1 Optimization of parameters of PSS 

The phase compensation technique [7] is used for 
optimizing PSS parameters. It comprises the following steps.  
 
1. Computation of the time constants of the lead networks: 

The phase angle of the transfer function GEP(s) is 
computed for nωjs = . This phase angle is denoted as γ . 
The time constants of the lead networks are computed so as 
to compensate the phase angle of the system. Hence 1T  and 

2T  are computed as follows. 

 

(5) 

2. Computation of stabilizer gain for the desired damping 
ratio ζ ; for the electromechanical mode. The stabilizer 
gain ( STABK ) is computed using the following equation.  

 

(6) 

Where =nω natural frequency of oscillation of the 

mechanical loop )( /MωK 01= , =(s)Gc transfer function 

of the phase compensator 2
22 s)]Ts)(1aT[(1 ++= ; and ζ  

is desired damping ratio (ζ =0.5 is assumed in the research 
work presented here). 

 
4.2 Generation of training patterns 

The training set should be so generated that it covers the 
complete domain of operation [10]. For generating training 
patterns; P; tV  and eX  are assumed to vary over the typical 
ranges given as: P: 0.5–1.0 p.u.; tV : 0.9–1.1 p.u.; eX : 0.4–0.8 
p.u.  

A set of 500 operating points is generated, randomly. For 
each value of P; tV  and eX ; the value of Q is computed. It is 
important to highlight that P; Q and tV  are chosen as the 
elements of input vector since these can be measured easily. 
The input vectornowaccounts for the variation of eX : For 
each of the 500 training points, the optimum parameters of the 
PSS ( *

STABK ; *
1T  and *

2T ) are computed using phase 
compensation technique. The output vector of the training 
patterns, thus, becomes *

STABK ; *
1T  and *

2T . The ANN based 
stabilizers proposed in the past do not account for the variation 
of equivalent reactance, eX . With the proposed structure of 
the ANN, the resulting ST-ANNPSS becomes highly robust.  

 
4.3 Selection of number of neurons in the hidden layer  

The architecture of the feedforward ANN comprises an 
input layer, one or more hidden layers and an output layer.  
For the present investigations, the elements of input vector are 
P; Q and tV  and that of the output vector are *

STABK ; *
1T  and 

*
2T  hence three neurons are needed in each of the input and 

the output layers. One hidden layer is chosen to start with. The 
ANN is trained presenting the training patterns using 
TRAINLM function of NEURAL NETWORK TOOLBOX of 
the MATLAB software. In order to arrive at an optimum 
number of neurons in the hidden layer, following systematic 
procedure is followed.  

 
Table 1. Effect of variation of number of training patterns on 

SSE (Training) and SSE (Test) 

 
 

 
Fig. 3. Schematic diagram of a synchronous generator with 

self-tuning artificial neural network based power system 
stabilizer (ST-ANNPSS). 

 
Table 2. Effect of variation of number of neurons in the 

hidden layer on SSE (Training), SSE (Test), training time and 
critical clearing time (CCT) 

 
 

The effect of variation of number of neurons in the hidden 
layer, on the performance of the ST-ANNPSS, is evaluated. 
The following quantitative indices are considered for 
evaluating the performance of the ST-ANNPSS.  
 
(a) The sum of squares of errors (SSE) attained at the end of 

the ANN training. It will be denoted by SSE (Training). 
(b) SSE obtained by presenting typical 20 test patterns (not 

included in the training set) to the trained ANN. The value 
of SSE so computed will be denoted by SSE(Test).  

(c) The critical clearing time (CCT) for a three-phase short 
circuit at the terminals of the generator cleared by itself 
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(i.e. post-fault system is same as the pre-fault system). 
Such a fault is called transitory fault. The CCT is obtained 
for the nominal operating condition and system 
parameters. The nonlinear mathematical model of the 
system (Appendix) is used for simulation studies. 

 
Before attempting a study for selection of the adequate 

number of neurons in the hidden layer, it is important to arrive 
at the required number of training patterns for training the 
ANN. The studies are carried out considering six neurons in 
the hidden layer. The ANN is allowed to continue to train till 
the reduction in SSE (Training) becomes insignificant.  

Table 1 shows the effect of variation of number of training 
patterns on SSE (Training) and SSE (Test). It may be clearly 
seen from Table 1 that the SSE (Test) decreases as the number 
of training patterns is increased from 50 to 400. The SSE 
(TEST) however, increases as the number of training patterns 
is increased beyond 400. The gradual increase in SSE 
(Training) with increase in number of training patterns is due 
to summation being carried out on larger number of training 
patterns. The quality of training is judged from the value of 
SSE (Test). The investigations clearly show that for the 
present study, a set of 400 training patterns is adequate for 
training the ANN and hence, 400 training patterns are used for 
further studies.  

Table 2 shows the variation of SSE (Training), SSE (Test), 
training time and the CCT computed for a transitory three-
phase short circuit at the terminals of the generator 
considering nominal loading and system parameters with  the 
variation of number of neurons in the hidden layer 
(computations were done using Pentium-100 MHz PC).  

It is clearly seen that both SSE (Training) and SSE (Test) 
decrease while the CCT increases with the increase in number 
of neurons in the hidden layer from 4 to 9. It is interesting to 
highlight the fact that with nine neurons in the hidden layer; 
both SSE (Training) and SSE (Test) attain a minimum value, 
while CCT becomes constant for number of neurons $9 in the 
hidden layer. It may be noted that the training time increases 
with increase in number of neurons in the hidden layer.  

Table 3 shows the optimum PSS parameters ( STABK ; 1T  and 

2T ) computed using trained ANN with nine neurons in the 
hidden layer, and those obtained by off-line computations, for 
10 typical test operating conditions (not included in the 
training set). It is clearly seen that the PSS parameters 
computed using ANN match very closely with the 
corresponding off-line computed optimum values.  

Studies were also carried out, by adding second hidden 
layer, and the investigations revealed that there is no merit in 
adding second layer. Hence, ANN with nine neurons in the 
hidden layer is chosen for further studies.  
 
4.4 Dynamic performance of the system with ST-ANNPSS 

Fig. 3 shows the schematic block diagram used for 
simulating the dynamic performance of the system with 
STANNPSS. A sampling period of 10 ms is assumed. The 
sampled values of P; Q and Vt of the synchronous generator 
are applied to ANN. The ANN computes the optimum values 
of PSS parameters ( *

STABK ; *
1T  and *

2T ). The stabilizing signal, 

Sv  is computed by the PSS using the *
STABK ; *

1T ; *
2T  and 

ω∆ . During the sampling period, the stabilizing signal so 
computed remains constant. Dynamic responses of the system 
are obtained considering a transitory three-phase short circuit 
of four cycles duration at the terminals of the generator.  

The dynamic responses of the system at nominal operating 

condition for ω  (Fig. 4) are obtained with: (a) ST-ANNPSS 
and (b) conventional PSS.  

Examination of Fig. 4 clearly reveals that the dynamic 
response obtained with ST-ANNPSS is virtually identical to 
that obtained with optimum conventional PSS 
( *

STABK =22.8418; *
1T =0.3360 s and *

2T =0.0748 s).  
Further, the dynamic response for ω  (Fig. 5) is obtained 

for an operating condition of the system quite different from 
the nominal i.e. P =0.6 p.u., Q=0.0731 p.u., tV =1.0 p.u. and 

eX =0.4 p.u, with (a) ST-ANNPSS and (b) conventional PSS 
(Tuned for the nominal operating condition i.e. 

STABK =22.8418; 1T =0.3360 s and 2T =0.0748 s). It is clearly 
seen that while the dynamic response with conventional PSS is 
significantly affected, the dynamic performance with 
STANNPSS remains well damped even with substantial shift 
in operating condition from the nominal. 

 

 
Fig. 4. Dynamic responses for v considering a transitory 3-

phase short circuit of 4 cycles duration at the terminals of the 
generator, with: (a) STANNPSS, and (b) conventional PSS 

( STABK =22.8418; 1T =0.3360 sec. and 2T =0.0748 sec.) 
 

 
Fig. 5. Dynamic responses for v considering a transitory 3-

phase short circuit of 4 cycles duration at the terminals of the 
generator, with: (c) STANNPSS, and (d) conventional PSS 

( *
STABK =22.8418, *

1T =0.3360 sec. and *
2T =0.0748 sec.) 

 
4.5 Effect of variation of loading condition 

The dynamic performance of the system with STANNPSS 
is now evaluated over a wide variation in loading condition. 
Following five typical loading conditions spread over the 
entire domain of operation for which the ANN was trained, are 
chosen for assessing the robustness of the STANNPSS:  

 
1. P=0.6 p.u., Q=0.112 p.u. and tV =1.0 p.u. 
2. P=0.8 p.u., Q=0.205 p.u. and tV =1.0 p.u. 
3. P=1.0 p.u., Q=0.333 p.u. and tV =1.0 p.u. 
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4. P=1.0 p.u., Q=0.232 p.u. and tV =0.9 p.u. 
5. P=1.0 p.u., Q=0.480 p.u. and tV =1.1 p.u. 
 

 
Fig. 6. Dynamic responses for v considering a transitory 3-

phase short circuit of 4 cycles duration at the terminals of the 
generator. 

 

 
Fig. 7. Dynamic responses for v considering a transitory 3-

phase short circuit of 4 cycles duration at the terminals of the 
generator. 

 
It may be noted that the equivalent reactance, eX =0.60 p.u.  

is considered for all the above operating conditions. The 
dynamic responses for ω  are obtained considering a 
transitory three-phase short circuit of four cycles duration at 
the terminals of the generator. Examining the responses (Figs. 
6 and 7), it may be concluded that the system dynamic 
performance with ST-ANNPSS is quite robust over the entire 
domain of loading.  
 

5. CONCLUSIONS 
 

A systematic approach for designing a ST-ANNPSS has 
been presented. A new approach for the selection of number of 
neurons in the hidden layer of the ANN has been proposed. 
Investigations show that ANN with one hidden layer 
comprising nine neurons is adequate and sufficient for ST-
ANNPSS. Studies show that the dynamic performance with 
ST-ANNPSS is virtually identical to that obtained with 
conventional PSS at the nominal operating condition. 
However, the dynamic performance of ST-ANNPSS is quite 
superior to that of conventional PSS for the loading condition 
different from the nominal. Investigations also reveal that the 
performance of ST-ANNPSS is quite robust to a wide 
variation in loading condition. 
 

APPENDIX 
The nominal parameters of the system are given below. All 

data are in per unit, except M and the time constants. M and 
the time constants are expressed in seconds [9]. 

 
The system frequency 0f =60 Hz. 

 
The nonlinear dynamic model of the system is given 
below: 

 
where 

 
For the nominal loading condition fdE =2.506 p.u. and 
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Table 3. PSS parameters computed using trained ANN with 
nine neurons in the hidden layer and corresponding off-line 
computed optimum values for 10 test operating conditions 

 

 
  
 


